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ABSTRACT

Buildings across the world contribute about one-third of the total
energy consumption. Studies report that anomalies in energy con-
sumption caused by faults and abnormal appliance usage waste
up to 20% of energy in buildings. Recent works leverage smart
meter data to find such anomalies; however, such works do not
identify the appliance causing the anomaly. Moreover, most of these
works are not real-time and report the anomaly at the end of the
day. In this paper, we propose a technique named Rimor that ad-
dresses these limitations. Rimor predicts the energy consumption
of a home using historical energy data and contextual information
and flags an anomaly when the actual energy consumption deviates
significantly from the predicted consumption. Further, it identifies
anomalous appliance(s) by using easy-to-collect appliance power
ratings. We evaluated it on four real-world energy datasets contain-
ing 51 homes and found it to be 15% more accurate in detecting
anomalies as compared to four other baseline approaches. Rimor re-
ports an appliance identification accuracy of 82%. In addition, we
also release an anomaly annotated energy dataset for the research
community.
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1 INTRODUCTION

Globally, buildings consume one-third of the total energy consump-
tion [13]. Studies report that anomalies in buildings’ energy1 con-
sumption caused due to faults (such as air conditioner duct leakage)
1power and energy are used interchangeably
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and abnormal appliance usage (such as leaving lights on after us-
age) waste up to 20% of energy in buildings [29, 32, 34]. Studies
also show that detecting such anomalies in real-time and identify-
ing the anomalous appliance can result in more than 12% energy
savings [2].

Unfortunately, the current anomaly detection techniques using
smart meter2 data only detects anomalies but does not identify the
appliance causing the anomaly [9, 20, 26]. Identification of such
appliances in near real-time will allow consumers to take prompt
action and results in energy savings. Identifying an anomalous ap-
pliance among n appliances of a home using single a smart meter is
more economical than using n separate monitors for each appliance.
Furthermore, current techniques are not real-time and report the
anomaly at the end of the day. These techniques use power data
over the duration of an entire day to detect whether the day has
anomalous usage or not [1, 8, 27]. In related areas, such as energy
prediction [14, 16, 37], contextual information (such as day of week
or external weather conditions) have been used, but none of the
existing anomaly detection techniques in the energy domain uses
such information. We believe that adding contextual information
should increase the anomaly detection accuracy because the energy
consumption of buildings is a function of these contextual factors.

In this paper, we propose a novel technique called Rimor3 - that
can identify the appliance causing the anomaly by using aggregate
smart meter data and contextual information in near real-time. The
basic intuition behind Rimor is that homes should have similar
temporal energy patterns if we account for variations in context,
such as weather. Rimor works in three steps. Firstly, it predicts the
energy consumption of a target day by using historical energy data
and contextual information. Secondly, it flags the energy consump-
tion to be anomalous if there is a significant difference between the
predicted energy consumption and the actual energy consumption.
Lastly, it identifies the anomalous appliance by comparing the dif-
ference between the predicted and the actual energy consumption
to the rated power consumption of appliances present in the house-
hold. The rated power consumption of different home appliances is
publicly available and can be easily collected [38].

We evaluate Rimor on 51 homes from four different real-world
publicly available datasets namely Dataport [12], AMPds [21], ECO
[7] and REFIT [22]. All these datasets contain appliance level con-
sumption data in addition to aggregate home consumption collected
using smart meters. None of these datasets are annotated with
anomalies. Moreover, no anomaly-annotated dataset is publicly
available in the energy domain. Previous works [1, 8, 20, 25–27]
have manually annotated datasets using domain experts, but they
have not been released. For the first time, we annotate these datasets
manually and make them available to the research community. We

2A smart meter measures aggregate power usage of a home in real-time. Apart from
billing, it allows data logging and can be controlled remotely by power utilities
3In Latin, Rimor means investigator, explorer
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compare Rimor with four other baselines: Multi-User Anomaly
Detection (MUAD) [1], Collect, Compare and Score (CCS) [27],
Twitter Anomaly Detection (TAD) [28, 36] and Real-time Anomaly
Detection (RAD) [10]. We find that Rimor reports an improvement
of 15% in F-score in the detection of anomalies as compared to
the baseline approaches. The anomalous appliance identification
accuracy is found as 82%. Our analysis shows that contextual in-
formation accounts for a 16% improvement in energy prediction.
We produce Rimor as an open-source web application4 that can
potentially identify anomalous appliance in any home that has a
smart meter installed. Smart meters are now becoming ubiquitous
IoT devices to manage countries’ energy demands5.

The contributions of this paper are:
• We propose a near real-time anomaly detection technique,
Rimor, which identifies the anomalous appliance by using
easily available appliance’s power ratings. Further, we show
that adding contextual information improves anomaly de-
tection accuracy.

• We evaluate Rimor with four other existing techniques. All
these techniques can only detect the anomaly but do not
identify the anomalous appliance. The evaluation shows
that our technique improves detection accuracy by 15%.

• We make the anomaly-annotated dataset public, along with
a web application of Rimor.

In section 2, we discuss the existing anomaly detection work in
the building’s energy consumption domain. Section 3 explains the
methodology of Rimor. Section 4 explains the experimental setup.
Section 5 presents the results obtained. Section 7 presents insights
and the potential impact of Rimor. Section 8 discusses the future
work of Rimor, and concludes the paper.

2 RELATEDWORK

Anomaly detection in buildings energy consumption at aggregate
smart meter level startedwith the use of threshold-based techniques.
These techniques use thresholds defined by statistical features like
daily average and peak energy usages to find anomalies [30, 31].
These techniques do not model the effect of dynamic factors affect-
ing energy usage such as seasonality and other user contexts. In
contrast, Chen et al. converted raw power readings to symbolic
representation, and then used clustering to identify anomalies [9].
Moreover, Li et al. introduced a different technique, which flags
anomalies if the energy consumption does not follow the classifica-
tion model built from the historical consumption data [20]. Recent
works [1, 8, 27] compute the anomaly score in the range [0 - 1] for
the entire day’s energy consumption. A major limitation of these
techniques is that they detect anomalies at the end of the entire day
consumption. As a result, an anomaly in the early morning hours
remains undetected till day-end, which results in energy wastage
for a long duration. Moreover, on detection of an anomaly at the
day-end, the building administrator has to look through the en-
tire day’s usage logs to identify the exact anomalous time interval,
which is a time-consuming process. All of these techniques work on
offline historical energy data sets to find anomalous days. Running

4https://github.com/loneharoon/AnomAppliance
5https://goo.gl/5GuaUJ

these techniques at smaller duration is challenging because then
they have fewer data points compared to a full-day duration.

To overcome the lag in reporting anomalies, a few real-time
techniques detect anomalies by comparing the actual real-time us-
age with the predefined allowable energy limits, usually calculated
via prediction approaches. In this direction, a work by Nadai et
al. [11] proposed a hybrid forecasting model with auto-regressive
integrated moving average and artificial neural networks to find
anomalies in gas consumption. Authors flag usage as anomalous
if it is greater than some user-defined threshold. This technique is
not adaptive to dynamic energy usage, as the defined threshold is
static. Energy usage varies with time, and it is important to adjust
the threshold adaptively. The proposed technique, Rimor, differs
from this work as it does not use any such type of static threshold.
Another technique by Chou et al. works in two stages, i.e., predic-
tion and the anomaly detection stage [10]. Prediction is done on a
weekly basis, and the actual usage is considered as anomalous if it
is outside two standard deviations of the predicted usage. The two
main limitations of this technique are: (i) predictions are made a
week ahead, which means predictions do not include the effect of
recent historical days; (ii) detected anomalous observations are not
removed from data for future predictions. Therefore, anomalous
observations affect predictions in this technique.

A major limitation of all existing techniques is that they do not
account for the effect of contextual factors (weather, occupancy)
in anomaly detection. Several works have shown that energy con-
sumption is severely affected by these contexts [16, 18, 23, 37].
While looking at the limitations of the existing approaches, we pro-
pose a near-real-time anomaly detection approach, Rimor , which
not only finds the anomalies in near real-time but also identifies
the anomaly-causing appliance. Rimor uses contextual factors to
detect anomalies in energy consumption data.

ALGORITHM 1: Steps in proposed anomaly detection approach, Rimor
Input: Historical power consumption Ytrain of N train days; Contextual

variables Kr eal , Kbinary , and actual energy consumption Ytest
of a test day; and power ratings aul of n appliances present in home

Output: Anomalous appliance
1 Predict energy consumption �Ytest and prediction band �Ytest,er ror for

the test day using Ytrain , Kr eal , and Kbinary
2 Compare Ytest with �Ytest and �Ytest,er ror to flag anomalous time

instances of the test day
3 Identify anomalous appliance if any anomalous time instances found with

argmin
al

(abs(�Ytest − Ytest ) − aul ), ∀l ∈ {1, · · · , n }

return al /* i.e., the anomalous appliance,if any */

3 METHODOLOGY

The overall goal of Rimor is to detect anomalies and identify the
anomaly-causing appliances in near real-time. To achieve this goal,
Rimor uses contextual information for a more accurate detection of
anomalies. For example, homes can have different energy patterns
on weekdays and weekends, and accounting for those differences
can lead to better anomaly detection. Rimor uses two types of

https://github.com/loneharoon/AnomAppliance
https://goo.gl/5GuaUJ
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contextual information: real-valued (such as temperature and hu-
midity) and binary (such as: is it the weekend?) denoted by Kr eal
and Kbinary respectively. Algorithm 1 provides an outline of steps
in Rimor.

Since Rimor aims to detect anomalies in near real-time, we divide
a day intoW equally spaced chunks (for exampleW = 24 means 24
chunks of an hour each). Now, our problem reduces to detecting
each of thesewi ∈W (where i ∈ {1, . . . , |W |}) chunks as anomalous
or not, and for anomalous chunks identifying the anomaly causing
appliance. An important consideration in Rimor is that the number
of samples (T ) collected from the smart meter should be greater
than the chunk duration. Higher T will provide more points in a
chunk and would likely be better for deciding whether the chunk
has anomalous usage or not. Rimor uses following three steps to
detect anomalies and identify anomalous appliance:
I. Energy prediction: This step takes energy consumption data
of the previous N days (Ydtrain ,∀d ∈ {1, . . . ,N }), the Kr eal values,
and the Kbinary contextual data points of a test6 day as input
variables to predict the energy consumption (�Ytest ) of test day.

The relation between the input variables and the energy con-
sumption of test day can be either linear or non-linear. So two
different regression approaches are used, i.e., linear regression and
neural networks. Linear regression models the linear relationship
between input variables (Ydtrain ,Kr eal ,Kbinary ) whereas neural
networks model non-linear relationship, if exists [19].
• • • The proposed regression model is summarized as follows:

�Y ttest = C + N∑
d=1

αdYd,ttrain +

Kr eal∑
j=1

β jZ
j,t
r eal+

Kbinary∑
j=1

γ jZ
j,t
binary + ϵ

t
test ,∀t ∈ {1, . . . ,T }

(1)

where �Y ttest represents predicted energy consumption at the t th

time instant of a test day,C represents the intercept term. αd is the
coefficient corresponding to energy consumption (Ydtrain ) of d

th

historical day; Z j,t
r eal and Z

j,t
binary represent the value of the jth real

and binary external context variables at the t th time instant of the
day. β j and γ j correspond to the coefficients for the jth real and
binary contextual variables, and ϵttest represents modelling error.

In addition to �Y ttest , the prediction error band is computed as:

�Y ttest,error = +−δ ∗ σ t ,∀t ∈ {1, . . . ,T } (2)

where σ t represents standard deviation at the t th time instant of
a day, and δ ∈ {1, . . . , 3} represents number of standard deviations.
• • • Neural networks take same variables (Ydtrain ,Kr eal ,Kbinary )

as input and output �Y ttest and �Y ttest,error . The exact relationship
between input variables keeps changing so we cannot represent
any specific form of the equation here. The set parameters of neural
networks are defined in Section 4.5 (Experimental Setup) in detail.

6Test day refers to a day for which prediction is to be done, and train days refer to
historical days

Mostly, the energy consumption throughout a day does not
follow complete stationarity7, so we created four separate models
corresponding to every six consecutive hours of a day in both
regression and neural network approaches. In this way, day-times at
which complete stationarity is violated do not affect the prediction
accuracy of the remaining times of the day.
II. Anomaly Detection: This step detects whether the actual en-
ergy consumption Ytest on a test day of any chunk wi (wi ∈ W )
is anomalous or not. It uses a single rule - if Ytest deviates signif-
icantly from �Ytest for a duration S (S <= timeduration(wi )) of
chunkwi , thenwi is considered as anomalous. Programmatically,

count = 0
S = x // User defined value
for t = 1 to length(wi)

if Y t
test > (�Y t

test +
�Y t
test,er ror ):

count = count + 1
if count >= S:

print (Chunk wi is anomalous)

Note that the first if statement in the above snippet considers
only the upper prediction band because appliances mostly consume
higher energy in an anomalous state than in their normal state.
III. Anomalous Appliance Identification: Once an anomalous
chunk is detected, the next step is to identify the anomalous appli-
ance al which resulted in an anomaly from the set of n appliances
A = {a1, . . . ,an } present in household. This step uses all n appli-
ance’s power ratings (in Watts) to identify the anomalous appliance.

Let aul denotes the power rating of appliance al where al ∈ {A}.
Among n appliances, the anomalous appliance is identified with
the following equation

argmin
al

(abs(�Ytest − Ytest ) − aul ),∀l ∈ {1, . . . ,n} (3)

i.,e., the appliance al which minimizes the difference between
abs(Ytest −�Ytest ) and its power rating (aul ) is flagged as anomalous.

4 EVALUATION

4.1 Dataset

Energy data: We use four different publicly available datasets
spanning four countries, for the evaluation of Rimor. The datasets
include Dataport [12], AMPds [21], ECO [7] and REFIT [22]. Table 1
shows the details of each dataset.We used consecutive threemonths
of energy data with minimal missing values from each home for
anomaly detection. The selected months were: June to August 2014
from Dataport and REFIT, January to March 2014 from AMPds,
and August to October 2012 from ECO. While the Dataport dataset
has data from more than 500 homes, we chose 24 homes having a
consistent set of appliances. These datasets logged power readings
at rates varying from 1 to 60 readings a minute. However, most
electrical utilities log data once every 10 to 15 minutes8. Thus, we
downsampled the data from all the datasets to 10 minutes.

7Mostly, at morning and evening times, energy consumption is higher and different
than remaining times of a day
8https://www.eia.gov/consumption/residential/reports/smartmetering/pdf/
assessment.pdf
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Dataset Homes Sampling Appliances Country

used (#) rate (s) per home (#)

Dataport 24 60 09 USA
AMPds 01 60 20 Canada
ECO 06 01 08 Switzerland
REFIT 20 08 09 UK

Table 1: Dataset characteristics

Dataset Min # Max # Mean # Total #

per day per day per day of anomalies

Dataport 0 3 0.35 480
AMPds 0 1 0.25 18
ECO 0 2 0.08 30
REFIT 0 2 0.21 280

Total 0 3 0.22 808
Table 2: Statistics of anomalies present in datasets of three

months duration.

Weather data: Weather data, i.e., temperature and humidity re-
quired for predictions is obtained from a publicly available weather
service, WeatherUnderground9. The data is available at the sam-
pling rate of thirty minutes to one hour. We up-sampled weather
data to the same rate of 10 minutes as energy data via interpolation.
Appliance ratings: Power ratings of any appliance can be easily
obtained by knowing the make and model of the appliance. How-
ever, in our datasets, only Dataport contained appliance make and
model, and that too for a limited number of homes and appliances.
Thus, we obtained the appliance power ratings using the appliance
power traces made available in these datasets. Most appliances can
be modeled as finite state machines (FSMs), where each state corre-
sponds to a mode of operation (e.g. off, on, intermediate) and has
an associated power draw (e.g. 0 Watts when off, 200 Watts when
on) [3]. We learned the appliance ratings, i.e. the amount of power
draw in different states of operations using standard clustering
procedures [15].

4.2 Ground Truth Collection

Collecting ground truth information about anomalies in the build-
ing energy domain is considered a challenging and tedious task [8].
Very few studies [35] had access to the necessary infrastructure
to automate the process of collecting ground truth partially. This
ground truth labeling task is inherently manual and requires a do-
main expert to analyze (through visualizations) the total building
energy data, appliance energy, weather parameters, and service
logs. Most prior works [1, 8, 20, 25–27] use domain expertise to
label anomalies. We followed the same approach to label the ground
truth in these four datasets by consulting with a domain expert. Due
to space constraints, we explain the labelling process separately at

9https://www.wunderground.com/

Dataset Top 3 anomalous appliances (% contribution)

Dataport Dryer (35%), Air conditioner (9%), Dishwasher (7%)
AMPds Dryer (58%), Heat pump (29%), Oven (5%)
ECO Fridge (54%), Dryer (27%), Washing machine (18%)
REFIT Dishwashwer (34%), Dryer (25%), Washing machine (7%)
Table 3: Statistics on the top-3 anomaly causing appliances

and the percentage of anomalies contributed by them.

https://github.com/ loneharoon/PowerViz in detail. Here, we briefly
mention the steps followed.

(1) Plot power consumption for each month in a subplot pat-
tern, where each subplot shows aggregate and appliances
consumption for separate days.

(2) Plot weather variables temperature and humidity of the same
duration in subplot style.

(3) Analyze all these plots at once and identify the deviations, if a
significant deviationwas observed in aggregate consumption
and weather variables do not explain the deviation then we
labeled that an anomaly.

Datasets used in prior works are not publicly available, but we
release our anomaly labeled dataset for public reuse10.

In total, 808 anomalies were observed across the four datasets
as shown in Table 2. Dataport and ECO had the highest and the
lowest mean number of anomalies per day, respectively. Table 3
shows the top-3 anomaly causing appliances across four datasets.
Appliances, such as dryer, dishwasher, and washing machine cause
the maximum number of anomalies. All these three appliances gen-
erally contribute significantly to the overall energy consumption
in a home11.

4.3 Baseline Techniques

We compare the performance of Rimor with four other techniques:
I. Multi-User Anomaly Detection (MUAD)[1]: It breaks down
the daily power consumption inW chunks as we did in our tech-
nique. For each chunk, this technique has two steps. First, it com-
putes anomaly score for energy consumption by using k-medoid
clustering algorithm for each home separately. Next, it compares
anomaly scores of all homes in the same geographical locality to
adjust the final anomaly score.
II. Collect, Compare, and Score (CCS) [27]:This technique takes
as an input the same feature vector as MUAD. However, instead of
k-medoid clustering, it uses Local Outlier Factor (LOF), a density-
based approach to compute the anomaly score for the energy con-
sumption in each user-defined time interval. It assigns an outlier
score, i.e., the degree of outlierness, to each object based on the
neighboring objects only.
III. Twitter Anomaly Detection (TAD) [28, 36]: In 2015, Twitter
released an open-source anomaly detection package. This uses sea-
sonal hybrid Extreme Studentized Deviate (ESD) algorithm, which
builds upon Generalized ESD test.

10https://goo.gl/SjozdF
11http://www.eia.gov/consumption/residential/data/2009/

https://www.wunderground.com/
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IV. Real-time Anomaly Detection (RAD) [10]: This technique
firstly uses an auto-regressive neural network-based approach for
prediction, and later observation which lies outside two standard
deviations from the predicted consumption are flagged as anom-
alies.

4.4 Evaluation Metrics

The metrics used to measure the accuracy of Rimor are defined as:
F-score: It is interpreted as a harmonic average of precision and
recall as

F score = 2 ∗ precision ∗ recall
precision + recall

(4)

Precision measures the percentage of true anomalies against the
total number of reported anomalies. Recall measures the percentage
of true reported anomalies to the total number of anomalies present.
The value of the F-score ranges between [0, 1]. The higher the value,
the better is the performance.
Appliance identification accuracy: Anomaly detection results
in true positives, true negatives, false positives, and false negatives.
To compute the true appliance identification accuracy, we consider
only true positive cases by using the following formula

Identification Accuracy =
Total # of correct identified appliances
Total # of true positive anomalies

(5)
Symmetric mean absolute percentage error: The anomaly de-
tection performance of Rimor depends on the accuracy of the pre-
diction (Step 2: Anomaly detection). We use a standard performance
metric, symmetric mean absolute percentage error (SMAPE) [33], to
measure the prediction accuracy of regression and neural network
models. SMAPE is defined as

SMAPE =
T∑
t=1

|�Y ttest − Y ttest |

|�Y ttest | + |Y ttest |
(6)

Where, �Y ttest and Y ttest are predicted and actual values of power
consumption data at time instant t . The lesser the value of SMAPE,
the better is the prediction accuracy.

4.5 Reproducible Experimental Setup

For Rimor technique:We use leave-one-out cross-validation to
find the optimal number of historical train days N using Bayesian
Information Criteria (BIC). N was varied between 1 to 21 and was
finally set at N = 4 as it resulted in the lowest BIC value. Anomaly
detection rate,W = 24, is done at an hourly rate, and the S param-
eter is set to 30 minutes. We will present the sensitivity analysis
of all these parameters in Section 6. Note that there is no division
of training and testing dataset, Rimor works in a rolling window
manner, where the current day for which prediction (or anomaly
detection) is done is considered as a test day and historical days are
considered as train days. It must be noted that an outlier or anomaly
in the train days can lead to learning incorrect models. Thus, we
check and remove such outliers in train days before training the
regression model or the neural networks using Rlof R package12.
12https://cran.r-project.org/web/packages/Rlof/index.html

0.0

0.2

0.4

0.6

0.8

AMPds Dataport ECO REFIT

Dataset 

F
−

sc
or

e 
 (

H
ig

he
r 

is
 b

et
te

r)

MUAD

CCS

TAD

RAD

RIMOR

Figure 1: Our approach (Rimor) gives 15% better accuracy in

detecting anomalies.

SMAPE (Lower is better)

Dataset Regression Neural Networks

Dataport 0.60 0.33

AMPds 0.42 0.29

ECO 0.62 0.39

REFIT 0.54 0.31

Table 4: Prediction accuracy using SMAPE metric.

Existing implementation of neural networks in the Caret pack-
age of R was used to get prediction results. With cross-validation,
the optimal neural parameters were found as: number of hidden
nodes = 10, weights = 0.05, and the number of repeats as 500. For
anomaly detection in Step 2 of Rimor, two standard deviation rule
was used to flag the anomalies, i.e. δ = 2. All parameters were set
empirically, due to space constraints we will show the analysis of
important ones only. The implementation code of Rimor is publicly
available in the form of R shiny application at Github13.
For baseline techniques: The R code of MUAD and CCS were pro-
vided by their authors. Implementation of TAD is publicly available
as an AnomalyDetection14 R package. RAD results were obtained
using the R Forecast package as used by the authors of the paper.
For all the four baseline techniques, we used the parameter values
as suggested by their authors for optimal performance.

5 RESULTS

5.1 Anomaly Detection Performance

Our main result in Figure 1 shows that our approach, Rimor, re-
ports an average 15% better anomaly detection accuracy compared
to the four baselines. For both our approach and the baselines, we
found that the false positive rate (FPR) was generally higher than
the false negative rate (FNR). For our approach, most of these false
positives result due to the underprediction of actual energy con-
sumption, which, in turn, results from irregularity in pattern across
several consecutive days. In contrast, the high FPR in the baseline

13https://github.com/loneharoon/AnomAppliance
14https://github.com/twitter/AnomalyDetection

https://cran.r-project.org/web/packages/Rlof/index.html
https://github.com/loneharoon/AnomAppliance
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Figure 2: Effect of number of historical days N on energy

consumption prediction. Using 4-5 historical days gives the

best model accuracy.

approaches is because they do not account for contextual variables,
and they do not remove the outliers in the historical data.

While, across all the datasets, our approach outperforms the
four baselines, the performance for AMPds and REFIT is better
than the other two datasets. This can be attributed to the better
energy prediction accuracy on AMPds and REFIT as shown in
Table 4. AMPds and REFIT show better accuracy since the power
patterns are more regular when compared to the other two datasets.
We believe that there can be additional contextual parameters to
improve the energy consumption prediction for Dataport and ECO.

From Table 4, we can also see that neural networks modeling
the non-linear relationship between the input features and the
output power consumption outperform the linear regression model.
This indicates the presence of non-linear relationships among the
considered data variables. Since neural networks perform better
than the regression model, we use only neural network prediction
results for anomaly detection and appliance identification.

5.2 Appliance Identification Performance

The appliance identification accuracy is shown in Table 5. On av-
erage, Rimor reports 82% appliance identification accuracy. We
observe that the ECO dataset shows the lowest appliance identifica-
tion accuracy. This is because the dryer and the washing machine,
which collectively account for 45% of the anomalies in the dataset,
have very similar appliance power ratings. Since our identification
approach currently leverages only appliance power ratings, it will
show low accuracy in the presence of appliances having similar
power ratings. Table 6 shows a few pairs of appliances having a
similar power rating across the different datasets.

6 SENSITIVITY ANALYSIS OF PARAMETERS

6.1 Number of Historical Days

The accuracy of predictions in prediction models depends upon
the number of historical days (N ). Figure 2 shows the effect of the
change in the number of historical days on BIC value across the
different datasets. The lower the BIC value, the better the model

Dataport AMPds ECO REFIT

0.85 0.88 0.76 0.81
Table 5: Anomalous appliance identification accuracy

Home Appliances Dataset Approx.

# ratings (W)

1 Clothes Washer & Microwave REFIT 0450
2 Cooktop and AC Dataport 1200
3 Water heater and AC Dataport 1100
4 Heat pump and wall oven AMPds 1800
5 Furance and kitchen plugs Dataport 0450

Table 6: Appliances found in few homeswith approximately

similar power ratings. Due to similar power ratings, such ap-

pliances typically lower appliance identification accuracy.

is. As shown, prediction models achieve lower BIC values when
the days are between 4 and 5. As we increase history from 1 to
4 days, the BIC decreases, signifying that the regression models
work better with more historical data. However, beyond 6 or 7 days,
adding more historical information increases BIC, signifying that
the additional historical data is generally less representative of the
recent energy consumption trends.

6.2 W and S Parameter Selection

TheW parameter controls the chunk size; for example,W = 24
means each chunk consists of one-hour consumption data ( =
# of hours in a day

W ). The S parameter defines the threshold on the
number of observations within a chunk behaving abnormally. First,
we discuss the effect of S on various metrics such as precision, recall,
and F score while keepingW constant, and later, we discuss the
effect of varyingW on the mentioned metrics.

ForW = 24, Figures 3(a) and (b) show as S increases, both pre-
cision and recall increases for all the four homes. This means that
with increasing S , the number of false positives and false negatives
decreases. Our data is at a 10-minute sampling rate, soW = 24
means that a chunk of hour size consists of 6 observations. For this
W , the chance of flagging a chunk as erroneously anomalous is
higher at S = 10 as compared to S = 50, because S = 50 defines the
behavior of five observations as compared to a single observation
(S = 10). This means a smaller S value results in more false posi-
tives as compared to a larger S value within the same chunk size.
Figure 3(c) shows the combined effect of precision and recall in
terms of F score. The higher the F score, the better the performance
of the technique.

ForW = 12, i.e., two hourly chunk size, Figures 3(d), (e), and (f)
show precision, recall, and F-score, respectively. Figures 3(c) and (f)
show that F-scores decreases as chunk size increases. F-score of 0.8
is achieved at 50 and 90 minutes in Figures 3(c) and (f), respectively.
A chunk size of one hour contains six observations while a chunk
size of two hours contains 12 observations. The chances of behaving
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Figure 3: At W = one hour : (a) Precision, (b) Recall, (c) F-score. At W = two hours : (d) Precision, (e) Recall, (f) F-score. Figures

show with increasing S both false positives and false negatives decrease. And with increasing chunk size, F-score decreases.

any three observations as erroneously anomalous are higher in 2-
hour chunks as compared to one-hour chunks. As a result, the same
value of S results in higher F-score in one hour chunk as compared
to a two-hour chunk.

From the analysis ofW and S , we conclude that for a chunk size
of C minutes, the S value needs to be > 0.5 ∗C minutes to achieve
a better F-score. A domain expert can define both of these param-
eters according to the nature of energy consumption. If anomaly
detection is critical, thenW can be set as low as possible, say hourly.

6.3 Impact of Contextual Information

We hypothesized that adding contextual information would im-
prove the anomaly detection accuracy as it would lead to a more
accurate energy prediction. Figure 4 shows that adding the week-
day/weekend context and weather information reduces the energy
prediction errors compared to using energy data, by 6% and 11%,
respectively. Adding the two contexts reduces the error by 16%,
thus validating our hypothesis.

7 INSIGHTS AND POTENTIAL IMPACT

Having discussed Rimor and its evaluation, we now revisit the
original motivation: can we help reduce the energy consumption
by identifying anomalous usage? To answer this question, we now
discuss the classification of flagged anomalies into actionable and
non-actionable anomalies, followed by a discussion on the potential
energy and monetary savings if these anomalies are timely rectified.

7.1 Actionable Anomalies

These anomalies represent energy wastage instances where timely
action can lead to energy savings. The marked regions in Figure 5(c),
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Figure 4: Addingmore contextual features decreases SMAPE

error and, hence, improves energy prediction.

(d) and, (e) show detected actionable anomalies. On these particular
days, the air conditioner took a longer ON compressor cycle during
the marked time duration. As a result, the aggregate usage devi-
ated from the historical days, and this resulted in an anomaly. We
observed similar external weather conditions during the previous
non-anomalous days and these particular anomalous days. Thus,
we believe that these anomalies can be attributed either to the air
conditioner misconfiguration [5] or some fault, like air conditioner
gas leakage. However, since the fault does not persist over time, we
believe that the most probable cause is setpoint misconfiguration.

7.2 Non-Actionable Anomalies

Such anomalies arise when users change their energy consump-
tion behavior as per their needs. For instance, if occupants have
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Figure 5: Aggregate power consumption of homes over several consecutive days. Transparent lines represent power consump-

tion of non-anomalous days, and the opaque line that of an anomalous day. Red rectangular regions shows anomalous time

intervals. The separate caption of each figure defines the cause of the anomaly.

guests at home, their energy consumption may increase. This raises
an important question on the subjectivity of the definition of an
anomaly. If we have additional contextual information, such as the
presence of guests, this usage will not be treated as anomalous.
Figure 5(a) shows a non-actionable anomaly from the dataset. We
found these anomalies were flagged out due to the extended usage
of the car charger. Normally, the charging used to happen for one
hour over several days, but on this particular day, it took two hours.
Figure 5(b) reports anomalies between 1300 - 1600 hours because
the air conditioner was running continuously, which is unusual
compared to historical days. Similarly, Figure 5(g) shows anomalies
that occurred when the air conditioner and the dryer were oper-
ated simultaneously. Note that these time intervals are flagged as
anomalous because these devices were never used simultaneously
in the same time interval during historical days. Figure 5(h) shows
anomalies that result from the sporadic untimely usage of the oven.

These anomalies have limited the scope of energy saving, but
their detection is still important because utilities may want to target
users with more consistent usage for programs such as Demand
Response (DR) [24]. Having information about abnormal usage may
improve the efficiency of DR programs.

7.3 Potential Energy Savings

Table 7 shows the statistics on energy consumed due to anomalies
in our dataset. From each dataset, we report only homes with mini-
mum and maximum amount of anomalous energy consumed. We
also report the average amount of anomalous energy over all the
homes of a dataset. In summary, this table shows that Rimor has the
potential to save up to 63.5 units of anomalous energy. In relative
terms, this would amount to an energy saving of around 8% per

Dataset Min. units Max. units Avg. units

(kWh) (kWh) (kWh)

Dataport 04 101 48.8
AMPds 93 93 93.0
ECO 53 74 64.0
REFIT 09 96 48.4

04 101 63.5

Table 7: Statistics of anomalous energy units consumed over

the duration of two months.

home. This shows that Rimor can save energy by using existing
smart meter data and publicly available weather information. More-
over, it does not require any new hardware to be installed in the
home.

7.4 Application Prototype of Rimor

We show the utility of Rimor by developing a web application15,
which requires energy consumption and weather data. Figure 6
shows a screenshot of our prototype application. Energy consump-
tion data can be readily obtained from installed home-level smart
meters, and weather data can be obtained from the same home
if available or from any publicly available weather services, such
as Weatherunderground16 or openweathermap17. Also, the two

15https://github.com/loneharoon/AnomAppliance
16https://www.wunderground.com
17http://openweathermap.org

https://github.com/loneharoon/AnomAppliance
https://www.wunderground.com
http://openweathermap.org
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Figure 6: Screenshot of prototype application

user-defined parametersW and S are provided to tune the anom-
aly detection rate (chunk size) and anomaly duration, respectively.
Before deploying Rimor, we plan to:

• Develop a dashboard which will show energy consumption
in real-time to a user and provide potential anomaly alerts
while running Rimor in the background. This dashboard will
also include an appliance registry for a one-time registration
of appliances present in a home. A homeowner needs to add
only the make and model of the appliances.

• Obtain consent from the homeowners and the power utility
to interface Rimor with their smart meter data.

8 FUTUREWORK AND CONCLUSION

In the future, we plan to extend Rimor in the following ways:
• Rimor currently identifies appliances by using just appliance
power ratings. However, as we saw in our analysis, many
appliances can have similar appliance ratings. For solving
such ambiguities, we plan to use the appliance time-series
power signal in addition to the rated power. The appliance
power signal can be obtained via non-intrusive disaggrega-
tion approaches from the aggregate smart meter data [4, 6].

• Currently, we assume that collecting appliance rating is a
one-time step, but certain cases have been found where new
appliances were introduced after a certain time. This can
be solved by maintaining a proper appliance registry portal
which can be updated.

• Currently, Rimor cannot differentiate between actionable
and non-actionable anomalies. In the future, we plan to use
active learning approaches [17] to differentiate anomalies.

In this paper, we presented Rimor to identify anomalous ap-
pliances in near real-time. We evaluated Rimor on four publicly
available datasets from different geographical locations and found
it to be 15% better in detecting anomalies. Our results showed
that adding contextual information helped to improve anomaly
detection by up to 16%. Given that the data required to run our
approach – smart meter data and external weather data – is read-
ily available, we believe our application can be scaled to a large
number of homes. Additionally, we make our anomaly-annotated

dataset publicly available and release Rimor in the form of a web
application.
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