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Residential buildings Commercial buildings

Source:  International Energy Outlook, 2017
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Reasons for energy wastage: 

Duct leakage in HVAC
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Reasons for energy wastage:  
• Appliance faults 
• Forgetting to switch-off appliances 
• Appliance mis-configurations

Energy wastage results in     
abnormalities
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Fig: Box plots on hourly power consumption of a home for 15 days  
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Using smart meters for 
abnormality detection 

• Allows real-time communication 
between grid and the meter 

• Allows logging of different energy 
parameters such as voltage, current, 
power factor, etc. Fig: Smart Meter [1] 

Half of US customers have smart meters installed [2]

[1] Source: Google Images 
[2] International Energy Outlook, 2017
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Issues with existing 
approaches

Lower abnormality detection accuracy 
• Simple thresholding methods result in false positives [1] 

• Ignoring contextual information [2]

[1] Balakrishnan et al. Data driven investigation of faults in HVAC systems with MCC, BuildSys, 2014 
[2] Bellala et al. Towards an understanding of campus-scale power consumption, BuildSys, 2011
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Issues with existing 
approaches

• Evaluated on either residential or commercial buildings [1]
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Fig: Energy consumption signature of commercial & residential buildings

[1] Bellala et al. Towards an understanding of campus-scale  power consumption, BuildSys, 2011
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Problem statement

Develop an abnormality detection approach that will: 
• Improve abnormality detection accuracy 

• Work in both residential and commercial buildings
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Proposed method: Monitor

Data Input Abnormality flaggingDimensionality reduction 

9



Dimensionality reduction

Multidimensional
Scaling
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Fig: Lower dimensional representation

Data Input Abnormality flaggingDimensionality reduction 

10

0

300

600

900

0 5 10 15 20 25
Hour of the day

Po
we

r (
wa

tts
)

Day1
Day2
Day3
Day4

Fig: Hourly power consumption of four days



Abnormality flagging

[1] M. M. Breunig et al. Identifying density-based local outliers. 2002

• Compute density for each day’s 
consumption with Local Outlier 
Factor (LOF)[1] 

• Normalize density values in the 
range of 0 to 1.

Data Input Abnormality flaggingDimensionality reduction 
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Dataset: IIIT-D energy dataset

Two faculty apartments 

• Size: Three bedrooms, a 
hall and a kitchen 

• Family size: Four (at max.) 

• Appliances: Fridge, AC, 
lighting and cooking 
appliances

Lecture block & HVAC chiller 

• Lecture block: 12 classrooms 
having lights, fans and HVAC 
equipment 

• HVAC chiller: A 100kW 
equipment for removing heat 
from the circulating water of 
HVAC system

16 weeks of data at hourly average sampling rate
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Power consumption patterns 
 in the used dataset

Apartment 1 Apartment 2
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Power consumption patterns 
 in the used dataset
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Baseline methods

[1] Bellala et al. Towards an understanding of campus-scale  power consumption, BuildSys, 2011 
[2] Arjunan et al. Multi-user energy consumption monitoring and anomaly detection, BuildSys, 2015

Computes abnormality score 
for all days with respect to one 
day having highest density

• ADM-I [1]
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Computes abnormality score 
for each day with respect to the 
centers of all the clusters

• ADM-II [2]
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Fig: Lower dimensional  representation 
of one month data
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Fig: Power signature of an apartment for one month
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Accuracy metric:  
ROC curve      AUC

False positive rate
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AUC value ranges between 0 and 1 19



Monitor increases AUC 
by 17%

The higher the AUC, the better is the performance
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Monitor reduces false 
positives (+)

Method A1 A2 Lecture block Chiller

ADM-I 15 9 7 20

ADM-II 0 1 2 2

Monitor 0 2 0 0

Table: False positives with different methods
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Method A1 A2 Lecture block Chiller

ADM-I 0 0 2 0

ADM-II 1 1 2 2

Monitor 1 1 3 1

Table: False negatives with different methods

Monitor has more false  
negatives (-)
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• Anomaly detection not 
in real-time
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Limitations

• Manual anomaly search
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• Improves abnormality detection accuracy 
–  Reduces false positives by a large 

margin 

• Works for both residential and 
commercial scenarios

Conclusion
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Thank You!
haroonr@iiitd.ac.in https://loneharoon.github.io


