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— Buildings consume 39% of

energy

Residential buildings Commercial buildings

®

Source: International Energy Outlook, 2017
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- Energy wastage — abnormalities

Reasons for energy wastage:

Duct leakage in HVAC

Source: Google Images
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- Energy wastage — abnormalities

Reasons for energy wastage:
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Energy wastage — abnormalities

Reasons for energy wastage:

Wrong AC settings
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Energy wastage results in
abnormalities
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Fig: Box plots on hourly power consumption of a home for 15 days @
CclC




D

- Using smart meters for

abnormality detection

* Allows real-time communication
between grid and the meter

* Allows logging of different energy
parameters such as voltage, current,
power factor, etc.

Fig: Smart Meter [1]

Half of US customers have smart meters installed [2]

[1] Source: Google Images
[2] International Energy Outlook, 2017




rlllri_ [ssues with existing

approaches

Lower abnormality detection accuracy
« Simple thresholding methods result in false positives [1]
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Fig: Every day follows a different energy consumption

* Ignoring contextual information [2]

[1] Balakrishnan et al. Data driven investigation of faults in HVAC systems with MCC, BuildSys, 2014
[2] Bellala et al. Towards an understanding of campus-scale power consumption, BuildSys, 2011




!Ilri Issues with existing

approaches

e Evaluated on either residential or commercial buildings [1]
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Fig: Energy consumption signature of commercial & residential buildings @
[1] Bellala et al. Towards an understanding of campus-scale power consumption, BuildSys, 2011 ' | '
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Problem statement

Develop an abnormality detection approach that will:
« Improve abnormality detection accuracy

~

« Work in both residential and commercial buildings
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Proposed method: Monitor
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. Dimensionality reduction
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Fig: Hourly power consumption of four days

Dimensionality reduction Abnormality flagging
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- Abnormality flagging

°
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* Compute density for each day’s
consumption with Local Outlier
Factor (LOF)[1]

- Normalize density values in the g%, 2 7,
range of O to 1. C s %

Fig: Lower dimensional representation

Abnormality flagging

[1] M. M. Breunig et al. Identifying density-based local outliers. 2002
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— Dataset: IIIT-D energy dataset

16 weeks of data at hourly average sampling rate

Two faculty apartments Lecture block & HVAC chiller
* Size: Three bedrooms, a  Lecture block: 12 classrooms
hall and a kitchen having lights, fans and HVAC
equipment

e Family size: Four (at max.)
. .  HVAC chiller: A 100kW
* Appliances: Fridge, AC, equipment for removing heat
lighting and cooking from the circulating water of
appliances HVAC system @
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Power consumption patterns
in the used dataset
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Power consumption patterns
in the used dataset
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Baseline methods

 ADM-I [1] - ADM-II [2]

Computes abnormality score Computes abnormality score

for all days with respect to one for each day with respect to the
day having highest density centers of all the clusters
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[1] Bellala et al. Towards an understanding of campus-scale power consumption, BuildSys, 2011
[2] Arjunan et al. Multi-user energy consumption monitoring and anomaly detection, BuildSys, 2015
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Results
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Fig: Power signature of an apartment for one month  Fig: Lower dimensional representation

of one month data @
clC
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Abnormality Score

Power (kW)

1.0-

0_0_.‘.|‘.||| |

1.0-

0.5~

0.0- LI U R
1.0-

0.5-

10 13 16 19
Days of a Month

01 04 07

22

Results

I-nav

Jouuop

l-nav

21

25 28 31

Fig: Power signature of an apartment for one month  Fig: Lower dimensional representation

of one month data
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Results
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— — Accuracy metric:

ROC curve — AUC
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True positive rate

0.5

Accuracy metric:
ROC curve — AUC
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AUC value ranges between 0 and 1




o Monitor increases AUC

by 17%
& @

1.00 -

0.75-

AUC value
o
3

0.25-

0.00 -

ADM-| ADM-II Monitor
Method

The higher the AUC, the better is the performance




e Monitor reduces false

positives (+)

®» ® ® ©

Method Al Lecture block Chiller
ADM-I 15 9 7 20
ADM-II 0 1 2 2
Monitor 0 2 0 0

Table: False positives with different methods




LB Monitor has more false

negatives (-)
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Method Al Lecture block Chiller
ADM-I 0 0 2 0
ADM-II 1 1 2 2
Monitor 1 1 3 1

Table: False negatives with different methods
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— Limitations

* Anomaly detection not * Manual anomaly search
IN real-time
timestamp power

2013-02-24 00:10:00 533.8

§ 2013-02-24 00:20:00 666.4

2013-02-24 00:30:00 1052.9

g § 2013-02-24 00:40:00 1048.8

§ 2013-02-24 00:50:00 1189.5

¢ § 2013-02-24 01:00:00 1145
° o |
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Anomalous Four of the Day :

usage *
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Conclusion

* Improves abnormality detection accuracy

— Reduces false positives by a large
margin

* Works for both residential and
commercial scenarios
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