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• Ruled-based algorithm to detect anomalies in compressor based appliances.
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• Experiments using publicly available four NILM algorithms and three datasets.
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A B S T R A C T

Identification of faulty appliance behaviour in real time can signal energy wastage and the need for appliance
servicing or replacement leading to energy savings. The problem of appliance fault or anomaly detection has
been tackled vastly in relation to submetering, which is not scalable since it requires separate meters for each
appliance. At the same time, for applications such as energy feedback, Non-intrusive load monitoring (NILM) has
been recognised as a scalable and practical alternative to submetering. However, the usability of NILM for
anomaly detection has not yet been investigated. Since the goal of NILM is to provide energy consumption
estimate, it is unclear if the signal fidelity of appliance signatures generated by state-of-the-art NILM is sufficient
to enable accurate appliance fault detection. In this paper, we attempt to determine whether appliance sig-
natures detected by NILM can be used directly for anomaly detection. This is carried out by proposing an
anomaly detection algorithm which performs well for submetering data and evaluate its ability to identify the
same faulty behaviour of appliances but with NILM-generated appliance power traces. Our results on a dataset of
six residential homes using four state-of-the-art NILM algorithms show that, on average, NILM traces are not as
robust to identification of faulty behaviour as compared to using submetered data. We discuss in detail ob-
servations pertaining to the reconstructed appliance signatures following NILM and their fidelity with respect to
noise-free submetered data.

1. Introduction

In buildings, electrical appliance’s faulty behaviour can happen ei-
ther due to a fault in any appliance part or user negligence, e.g., re-
frigerant loss in a refrigerator or keeping the refrigerator door open. An
instance of faulty behaviour can result in higher energy consumption
than its normal behaviour and/or can lead to permanent damage of the
appliance. Mostly, such faulty instances are intermittent; identifying
them promptly improves appliance maintenance and lifespan, and

results in energy savings. In this paper, hereafter, we call an appliance
showing faulty behaviour as “anomalous appliance” and the anomalous
instance as an “anomaly”.

Identifying faulty behaviour of appliances in buildings has tradi-
tionally used submetered data, i.e., measuring energy consumption at
appliance level individually, as in [1–3]. However, the number of
submeters or individual appliance monitors increases with the number
of appliances or loads, and therefore anomaly detection based on sub-
metering is not a scalable solution, especially in modern households
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with over 40 electric appliances.1

On the other hand, Non-intrusive load monitoring (NILM) estimates
the individual consumption of an appliance within a building from the
aggregate meter reading obtained from a smart meter, measuring total
household electricity consumption at each sampling point; effectively
eliminating the need for submetering. The effectiveness of NILM has
been demonstrated in providing appliance [4,5] and activity-based
feedback [6] to consumers, utilities, and policy makers (see [7–11] for
recent reviews).

NILM research has received an increased boost since 2010, pri-
marily due to the roll-out of smart meters worldwide [12] and evidence
that the appliance-level feedback to consumers can result in energy
savings of up to 15% [13]. Many algorithms have been proposed to
improve the disaggregation performance of NILM [14]. High dis-
aggregation accuracy has been reported in the literature (in some cases,
around 90% [15–17]), and presently, more than 30 companies are of-
fering NILM-based solutions [18], e.g., EnerTalk (https://www.
enertalk.com/product) from Encorded and SPEED (https://bit.ly/
2NLP1Yu) from Enetics provide appliance-level consumption details to
households from a bespoke smart meter fitted at the mains. There are
other somewhat meter-agnostic offerings too that work on smart meter
data from national roll-outs. However, in NILM literature and industrial
offerings, the algorithms are not always tested at scale on real, noisy
datasets typical of smart meter actual measurements from buildings and
households. Furthermore, many NILM solutions are limited to dis-
aggregating few appliances accurately, use multiple features (e.g., ac-
tive and reactive power, voltage, current) and sampled measurements
at ≫1 Hz that are generally not available from national smart meter
deployments, and offer either good classification accuracy (i.e., which
appliance was running) or good consumption estimation (i.e., how
much the detected appliance consumed in watts) accuracy. Current EU
and national law and smart meter deployments do not make data
available remotely (e.g., utility) at rates higher than 15–60min. Fur-
thermore, the feature available is mostly restricted to active power.
However, as per the UK Smart Meter specifications [19] and other home
energy management providers on the market (as discussed above) with
bespoke higher resolution smart meters, the data available to the cus-
tomer or data owner within the Home Area Network (HAN) is at higher
granularity, e.g, 1–60 s, and therefore NILM can provide useful energy
feedback directly to the customer.

While the ability of NILM in removing the need of submetered data
for itemized billing is well recognized, so far NILM has not been tested
for detection of appliance’s faulty behaviour in buildings. To ensure
accurate appliance anomaly detection, it is not sufficient to produce an
accurate energy consumption estimate, but also to reconstruct with
high fidelity the appliance load signature. In this paper, we assess the
accuracy of reconstructed appliance load signatures using state-of-the-
art NILM methods and therefore the possible impact of NILM on
anomaly detection, that depends on these load signatures being re-
plicated accurately. That is, we evaluate whether NILM-generated
power traces can be used directly in identifying anomalous appliances.

To identify faulty appliances from a single smart meter, first we use
four publicly available, well-established and popular NILM techniques
of [20–22,16] to obtain disaggregated appliance power traces, and then
attempt anomaly detection on these appliance power traces. Given the
exploratory nature of the work, and to gain deep insights, we focus our
study on the anomaly detection of two major energy consuming ap-
pliances in residential buildings, i.e., Air Conditioner (AC) and re-
frigerator. Typically, an AC runs for limited hours of a day, but often
consumes significantly high amount of energy. On the other hand, a
refrigerator remains operational 24×7, which causes it to consume
energy (usually around 7% of the total energy consumption [23])
continuously.

Anomaly detection is performed using a new rule-based proposed
algorithm, which we term UNUM2 that first learns the appliance’s
ON–OFF cycle frequency and duration during normal operation and
then monitors the appliance’s consumption and flags an anomaly
whenever a deviation is found.

Our study consists of two steps: (i) Perform energy disaggregation
using existing techniques to get NILM data (i.e., appliance-level traces);
(ii) Apply the proposed UNUM on both NILM data and submetered
appliance data, where testing on submetered data provides the baseline
performance of UNUM.

We use energy consumption data of six homes from three different
publicly available datasets (REDDs [24], iAWE [25], Dataport [26]) to
perform experiments. These datasets provide both aggregate smart
meter measurements at 1min (Dataport) and 1 s (REDD, iAWE) sam-
pling rates, and submetered data at the same rates (which is used purely
for baseline performance evaluation).

Contributions of this paper are summarised as:

1. A rule-based UNUM algorithm is proposed for detecting anomalies,
which uses appliance-level power traces of an AC or a refrigerator.

2. An in-depth methodological evaluation of the viability of NILM
power traces is provided through careful insertion of well-estab-
lished AC and refrigerator anomalies and through multiple metrics
of assessment, to determine the correlation between NILM accuracy
and resulting anomaly detection based on NILM power traces. The
generated annotated appliance anomaly dataset is made publicly
available.

3. Anomaly detection is performed directly on NILM-generated power
traces obtained from the smart meter aggregate measurements in-
stead of circuit-level measurements or appliance submetering.

4. Robust, methodological evidence is provided via four NILM algo-
rithms and three datasets for experiments. Using publicly available
NILM techniques and datasets allows reproducibility of presented
results.

5. We discuss further steps needed to facilitate effective anomaly de-
tection using NILM-outputs, i.e., appliance-level power traces ob-
tained from NILM.

The remaining paper is organized as follows: Section 2 discuss the
related work in the anomaly detection domain. Section 3 discusses the
proposed anomaly detection algorithms. Section 4 explains the dataset,
baseline algorithms and the evaluation metrics used. Section 5 men-
tions the results obtained. Section 6 discusses results obtained and
Section 7 concludes the paper.

2. Related work

Related work can be broadly divided into two groups: work on
anomaly detection and on NILM.

Anomaly detection: Anomaly detection in energy domain has be-
come a popular research topic with the introduction of smart meters
(aggregate load measurements), circuit-level and plug monitors (latter
two providing submetering data), which enable logging and analysis of
power consumption data. Therefore anomaly detection approaches
target either aggregate smart-meter or at submetered load level energy
measurements. First, we will discuss anomaly detection methods at the
smart-meter level and then at the appliance level.

Seem [27] first proposed an anomaly detection approach, from
smart meter data, that grouped different days consumption data into
clusters according to various criteria (e.g., weekday/weekend) and then
used statistical measures, such as mean and standard deviation, for each
cluster separately to identify anomalies. An alternative, unsupervised
learning approach is proposed [28] to identify anomalous days by first

1 https://tinyurl.com/yc4frb7f. 2UNUM. means “one” in Latin. It uses one appliance-level power trace.
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creating a lower-dimensional representation of high-dimensional en-
ergy data and then using a density-based algorithm to find anomalies.
An enhanced unsupervised algorithm, which in addition to smart meter
data uses context information (e.g., homes in the same locality should
get affected similarly by weather), is used to improved anomaly de-
tection [29]. The above algorithms detect household’s total energy
consumption anomalies, but cannot pinpoint the appliance causing the
anomaly. More recently, a rule-based approach for identifying anom-
alous appliances using smart meter data only is proposed [30], but the
approach falls short whenever several appliances with similar power
rating are present in a home. Therefore, identifying an anomalous ap-
pliance from smart meter data only, is still an open challenge.

There have been recent attempts to use appliance-level consumption
to identify appliance anomalies. Submetered data is used to build
models specific for AC, washing machine, and refrigerator which track
appliance’s consumption over time and flag anomalous usage instances
[1]. A self-adaptive stream clustering algorithm [2] is proposed to de-
tect anomalies in the previous appliances as well as in electronic loads
(TV, Laptop, Tablet, Mobile phone) using submetered data from these
appliances. However, multiple appliance-level monitors are needed,
which impacts the scalability of these approaches [1–3].

NILM: The ability to obtain appliance-level load measurements
from smart meter aggregate data, using purely computational software
methods with improved accuracy (see [14,31,32,11,10] for recent
surveys of methods) has also ignited broader applications beyond en-
ergy feedback such as device scheduling, recommendation engine, de-
mand response capacity estimation, itemized bills [33,6], appliance
mining [4], consumer studies [5], etc. (see [7–9] for surveys of NILM
applications), that either relied on submetered appliance-level power
traces or appliance models, which do not represent actual usage pat-
terns. Primarily, effectiveness of NILM is evaluated along three di-
mensions: (i) reducing sensing hardware cost, i.e., submetering, by
minimizing sensing installation and maintenance costs and reducing
infrastructural change. (ii) improving disaggregation accuracy: every year
numerous disaggregation approaches are being proposed to improve
the disaggregation accuracy. Broadly, this includes both state-based
and event-based approaches. Event-based NILM approaches, e.g., su-
pervised and unsupervised Graph Signal Processing-based NILM
[10,32], DT-based [34] estimate ON–OFF timings of appliances from
the aggregate household signal whereas state-based approaches, such as
those of [35–38], estimate combination of different appliance states
from the aggregate signal. Pre-processing methods, e.g. [11] to improve
NILM algorithms also improve accuracy. State-based approaches model
consumption of each appliance with a finite state machine (FSM)
[21,39,24,16,40–42]. Ideally, aggregate consumption is the combina-
tion of the appliance FSMs, and state-based algorithm should identify
contributing appliances with inferencing algorithms. Mostly, state-
based methods are Hidden Markov Model (HMM)-based and often
outperform existing event-based methods. (iii) minimizing the need of
training data: proposed NILM approaches are classified as supervised,
such as those in [16,24,22,43,10,34], or unsupervised
[40,35,44,45,32]. Supervised approaches require labeled training data
to do the disaggregation, while, unsupervised methods do not require
labeled training data. In general, supervised methods are more accurate
than unsupervised ones, but labeled training data requirement impedes
their scalability.

NILM for anomaly detection: NILM has been explored in [46–48]
for identifying faults in stand-alone closed systems such as waste-dis-
posal systems, air conditioner and refrigeration systems, using circuit-
level measurements, but not for identifying anomalous appliances in an
overall building using aggregate smart meter data.

A NILM-based approach is used to provide appliance-level feedback
by identifying appliances that consume more energy than expected
[49,50]. Focusing on refrigerator and HVAC, appliance models, in
terms of energy consumed per cycle are built for different operating
states (e.g., defrost, baseline, etc). Then, the NILM output is compared

to the models to test if it can provide appliance-specific advice (e.g.,
high defrost energy). Unfortunately, it is concluded that tested NILM
methods do not provide sufficient level of accuracy for such energy
feedback.

Compared to the previous approaches of [46–50], this paper’s ori-
ginality can be summarised as: (i) we perform anomaly detection on the
NILM-generated power traces obtained directly from the smart meter
aggregate measurements instead of circuit-level measurements for sub-
systems as in [46–48]. As expected, the more appliances contributing to
the true aggregate measurements, the “noisier” the measurements due
to multiple unknown appliances, and appliances with similar power
ratings, which is a more realistic scenario but also rendering NILM
problem more challenging [32] with potentially less accurate appli-
ance-level power traces. (ii) the proposed anomaly detection algorithm
is based on clear rules to estimate both the type of anomaly, as well as
when the anomaly occurred, (iii) we use extra state-of-the-art NILM
methods ([22,16]) which show improved disaggregation performance
compared to the ones used in [49,50] and help in providing a more
robust evaluation of using NILM for anomaly detection within specific
appliances, (iv) a much more in-depth methodological evaluation of the
viability of NILM power traces is provided through careful insertion of
known anomalies and through multiple metrics of assessment, to de-
termine the correlation between NILM accuracy and resulting anomaly
detection based on NILM power traces.

3. Methodology

In this paper, we focus our analysis on AC and refrigerator, which
are common household appliances. They are both compressor-based
and high energy consuming appliances, with the primary contributor to
their energy consumption being their compressor. Any fault in the
compressor itself or in any other part affecting the compressor gets
reflected in the power consumption trace of the appliance. Fig. 1(a)
shows the normal functioning of such appliances where each cycle
consists of ON and OFF states. In different types of faults, the duty-
cycling ON–OFF nature of an appliance deviates significantly from its
normal operation. Either it remains ON for longer durations, or it
switches frequently between ON, OFF states as shown in Fig. 1(b) and
(c), respectively. The power trace shown in Fig. 1 is for 10 h. Table 1
reports various reasons which result in these type of abnormal beha-
viour.

The total energy consumed by the AC operating effectively, as
shown in Fig. 1(a), is 7.2 kWh, while the total energy consumed during
anomalous operation, as shown in Fig. 1(b) and (c), for the same
duration, are 10.8 kWh, and 9.6 kWh, respectively. This is a 3.6 kWh
and 2.4 kWh increased energy use during anomalous conditions.
However, the AC is not used continuously like a refrigerator, and the
usage pattern varies significantly. We also show in Fig. 2 that the

Fig. 1. Power consumption signature of AC in three different modes for 10 h:
(a) Normal mode, (b) Abnormal mode when compressor takes long duty cycles,
(c) Abnormal mode when compressor duty cycles frequently.
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consumption pattern also varies depending on time of day, both for AC
and refrigerator. Therefore, using the relative total consumption per
day or a period of a day to estimate anomalies would not be accurate.
This is why we propose a rule-based approach, that takes into account
the appliance characteristics, and focuses on the average energy con-
sumption of the ON-cycle. For instance, in Fig. 1(b), each ON cycle is of
longer duration with energy consumption of 5.4 kWh, while as in
Fig. 1(c) each ON cycle is of shorter duration with energy consumption
of 0.32 kWh. This is to be compared with the average energy con-
sumption corresponding to the ON cycle for a normal operation, as in
Fig. 1(a), of 1.8 kWh. That is 3.6 kWh increase as above for anomaly (b)
and 1.48 kWh decrease for anomaly (c). While the total energy con-
sumption normalized by duration of use could provide an indicator of
anomalies, it would not explain the type of anomaly, i.e., whether
elongated or frequent cycling issue occurred. This is why a rule-based
approached is proposed.

Our study consists of two steps: (i) First, apply existing NILM
techniques on the smart meter data to get appliance power traces (ii)
Next, use proposed anomaly detection algorithm, UNUM, on both AC
and refrigerator disaggregated power consumption traces to identify
anomalies. We build UNUM upon our preliminary work presented in a
poster paper [52] by including more detailed rules. This has resulted in

improvement in accuracy and the scope; the algorithm has also been
evaluated thoroughly since its inception. Next, we explain UNUM, in
detail.

UNUM consists of training and testing phases. In training phase, the
statistical model of an appliance is built from T days of the appliance’s
historical power consumption trace, and in the testing phase, with the
appliance’s power consumption trace during a day as input, the algo-
rithm outputs whether the appliance’s consumption is anomalous or
not. The following steps are used in the training phase:

1. Input appliance’s power consumption trace of T days. The selected
days are from the period when the appliance worked normally and
also showed varied duty cycles according to different load condi-
tions. For example, compared to higher settings, at lower set-point
settings, the AC operates with considerably longer cycles.

2. Identify ON and OFF compressor states by using k-means clustering
algorithm [53]. This results into two clusters corresponding to ON
and OFF states as shown in Fig. 3. Label all power consumption
readings according to the cluster label. Cluster labels C1 and C2 are
assigned to readings of ON and OFF states, respectively. Note that
power consumption of OFF state is not 0 because an appliance still
consumes energy when its compressor is off.

3. For each ON and OFF state, identify timestamps of first and last
power consumption reading as first and last. Calculate the duration
Ds of each state as = −D last firsts .

4. Compute energy Es of each state using all power readings of a state
between first and last.

5. For all ON states, compute mean over Ds and Es, as D and E , re-
spectively. Also, compute standard deviation over Es denoted by σe.
Similarly, repeat all these statistics for OFF state.

Therefore, training model is a tuple (D E σ, , e) containing various

Table 1
Causes for different anomaly types.

Anomaly Type Causes

Elongated duty cycle Clogged air filter in AC, set point misconfiguration in AC, dry and cracked door gas kit in refrigerator [1]
Frequent cycling Refrigerant leak, electrical problem(short circuit or damaged wire in compressor or thermostat), compressor damage [51]

Fig. 2. Different power consumption signatures during day and night: (a) AC, (b) Refrigerator.

Fig. 3. Clustering of ON and OFF states into two clusters C1 and C2.

Table 2
Statistics of inserted anomalies in AC and refrigerator of six different homes. Homes 1–4, 5, and 6 are Dataport, iAWE and REDD homes respectively.

Ratings (W) Insertions(#) Duration (H) Duty cycle Frequency

Home AC Refrig. AC Refrig. AC Refrig. AC Refrig. AC Refrig.

1 2500 150 6 4 6–12 6–12 0.5–0.9 0.3–0.9 1/3, 3, 6 1/3, 1/4, 10, 12
2 1800 140 7 4 6–12 6–08 0.3–0.9 0.3–0.8 1/3, 1/4, 6, 10 1/2, 1/3, 10, 12
3 4000 090 6 4 6–12 6–10 0.5–0.9 0.3–0.9 1/3, 1/4, 1/7, 3, 6 1/3, 10, 12
4 1200 110 6 5 7–09 4–12 0.4–0.9 0.5–0.9 1/4, 1/6, 1/8, 16 1/7, 1/9, 1/12, 8
5 1800 100 5 4 5–12 5–10 0.2–0.9 0.8 –0.9 2, 4, 140, 150 9, 12, 150, 200
6 1200 150 5 6 6–08 3–11 0.2–0.9 0.2–0.9 4/5, 4, 12 4/20, 4/7, 1, 6, 90
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parameter values corresponding to ON and OFF states separately.
During analysis, we found that AC and refrigerator consume energy
differently at different times of a day. Fig. 2 shows that during the day
time, appliance’s duty cycle signature is distinct from that of the night.
So, we build separate models: one for the day (0600–1800 h) con-
sumption and the other for night consumption.

During the testing phase on a test day, UNUM first takes power
consumption data of an appliance and computes all mentioned para-
meters as defined above. Next, it uses the following set of rules to de-
cide whether the test day consumption is anomalous, and if yes, then
which type, i.e., elongated duty-cycle or frequent cycling:

Rule # 1: If an appliance switched between ON and OFF states
frequently, then it is frequent anomaly type as shown in Fig. 1(c). In this
case, on average, energy consumed in any of the cycles is lower than a
normal cycle, because ON cycles are interrupted frequently by OFF
cycles and hence are of shorter durations leading to lower energy
consumption than in normal operation case.

< − ∗ ∀ ∈E E n σ ,testday
i i

e
i

i ON OFF{ , } (1)

where ∈ >n n{ 0}.
Rule # 2: If an appliance remains in ON state for an extended

period, then it is an elongated duty-cycle anomaly as shown in Fig. 1(b).
In this case, on average, energy consumed in any of the cycles is higher
than in a normal cycle.

> + ∗E E n σtestday
ON ON

e
ON (2)

Rule # 3: If an appliance remains in ON state for an extended
period, and the OFF duration is also longer as compared to normal, then
it means that the appliance has been switched ON after a long time, as
usual, hence it is not an anomaly.

> + ∗

> + ∗

E E n σ

D D n σ D

,

( )
testday
ON ON

e
ON

testday
OFF OFF



(3)

With these set of rules UNUM outputs anomaly status informatively
to enable prompt decision-making: (i) which type of anomaly is present
in the appliance, and (ii) which part of the day resulted in anomaly, as
separate models are being used for day and night.

4. Evaluation

4.1. Dataset

We use energy consumption data of six homes from three different
publicly available datasets (four from Dataport, one from iAWE and one
from REDD [24–26]) for the evaluation. Other publicly available da-
tasets (ECO [54], DRED [55], Smart∗ [56], GREEND [57], REFIT [58],
UK-DALE [59], AMPds [60], Dataport [26], REDD [24], PLAID [61],
tracebase [62]) either do not have both AC and refrigerator or do not
have data of considerable duration required for the experiments. Only
one home in REDD has both AC and refrigerator data. All these six
homes selected for our experiments have both aggregate and sub-
metered data available. Sampling rate of Dataport is one sample per
minute while REDD and iAWE have 60 readings per minute. Homes 1–4
are from Dataport, Homes 5 and 6 correspond to iAWE and REDD, re-
spectively.

We select only four distinct homes from the 500 homes of Dataport.
The selection methodology was: (i) We ran disaggregation techniques -
FHMM [24] and CO [20] of NILMTK on all 500 homes and selected
homes having minimal disaggregation error for AC and refrigerator. We
assume that small disaggregation error will result in higher fidelity
appliance power traces and thus essential to evaluate the effectiveness
of NILM in identifying an anomalous appliance. (ii) All homes are dis-
tinct in their energy consumption patterns thus enabling us to robustly
evaluate our algorithms with a variety of consumption patterns. For
Dataport, the period June 2014 - August 2014 was chosen forTa
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evaluation due to the following: (i) these three months are high energy
consuming months due to extreme heat, and (ii) there is almost no
seasonal variation during these months. This enables us to train our
models on some data and then evaluate the built model on remaining
data since there is no seasonal drift.

For iAWE, the period July 13, 2013 - August 04, 2013 was selected
as suggested3 by the authors of the dataset and for REDD, data from
May 22, 2011 - June 13, 2011 was selected as this duration has minimal
missing data.

We did a meticulous manual inspection of the energy consumption

data and for these six homes, we found that the patterns were consistent
and “no anomalous instances were already present”. We inserted anoma-
lies, explained in detail in the next section, in these homes to check how
effective NILM is in detecting the inserted anomalies. Anomalies were
inserted following the methodology of [29]. The annotated dataset,
with inserted anomalies, is publicly available at this.4 link

4.2. Anomaly insertion

To evaluate the performance of NILM in identifying anomalous
appliances, two types of anomalies were inserted in the AC and re-
frigerator power traces of all six homes: (i) Elongated duty cycle and (ii)
Frequent cycling. These anomalies appear in AC and refrigerator op-
eration due to various reasons as reported in Table 1. Signatures of
these anomalies are shown in Fig. 1(b) and (c), respectively. Table 2
shows the statistics of all inserted anomalies. The following steps were
used to insert anomalies:

1. Extract appliance’s duty-cycle statistics manually for each home. As
the separate models are built for daytime (06:00–18:00) and
nighttime (00:00–06:00 & 18:00–24:00) hours, we note the
minimum and maximum duty-cycle of an appliance for both day and
night hours separately.

2. Keeping in view the normal operation of an appliance as recorded,
multiple instances of the anomalies, as reported in Table 2, were
inserted in AC and refrigerator power traces by replacing the mea-
sured signature (Fig. 1(a)) with the anomalous signature, e.g., either
Fig. 1(b) or Fig. 1(c). Four parameters define an anomaly signature:
(i) Power rating, (ii) duration, (iii) duty cycle, and (iv) frequency.
An appliance’s power rating defines its power consumption in the
ON state of duty cycle. For example, for Home#1, for the AC, six
anomalies of varying durations (6–12 h) were inserted on different
days. Fig. 1(b) shows an anomalous signature with a frequency of
1/2.5 meaning one ON and OFF cycle completes in 2.5 time units (=

Table 4
Appliance mapping of different homes. Meter 1 and Meter 2 represent aggregate consumption of separate rooms comprising lighting and fan loads only. The Dataport
Furnace refers to a blower. It is a part of Air Conditioner (AC) and is submetered separate to the AC. It is used to move the air over the condenser coils of AC.

Appliance Home1 Home2 Home3 Home4 Home5 Home6

1 AC AC AC AC AC AC
2 Refrigerator Refrigerator Refrigerator Refrigerator Refrigerator Refrigerator
3 Furnace Furnace Furnace Furnace Laptop Electric heater
4 Meter 1 Meter 1 Dishwashwer Microwave TV Stove
5 Meter 2 Meter 2 Clotheswasher Water heater Water filter Bathroom GFI

Fig. 4. Anomaly detection accuracy metrics – F-score, Precision, and Recall – of UNUM_S and UNUM_D on AC and refrigerator data.

Table 5
Division of data for UNUM and NILM approaches.

Home (#) Training duration Testing duration

1–4 June 01, 2014 - June 30, 2014 July 01, 2014 - August 31, 2014
5 July 13, 2013 - July 20, 2013 July 21, 2013 - August 04, 2013
6 May 24, 2011 - May 27, 2011 May 28, 2011 - June 13, 2011

Table 6
Number of missed anomalies at appliance level with UNUM_S in different
homes.

# of Inserted Anomalies # of Missed Anomalies

Home AC Refrig. AC Refrig.

# (=Ea+ F) (=E+F) (=E+F) (=E+F)

1 3+ 3 2+2 1+1 1+0
2 4+3 2+2 0+1 0+1
3 4+2 2+2 0+1 0+1
4 5+1 3+2 0+1 1+0
5 3+2 2+2 0+0 0+0
6 2+3 2+2 0+0 0+0

a E=Elongated duty-cyle, F= Frequent cycling.

3 http://iawe.github.io. 4 https://doi.org/10.15129/d712ccac-21a1-40d2-8456-41217b62a6d5.
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one hour) and with a duty cycle of 0.9 means 90% of cycle is in the
ON state and remaining 10% is in the OFF state.

3. Later, the corresponding anomalies were also inserted in aggregate
consumption to maintain synchronization between appliance’s
consumption and the aggregate consumption.

4.3. Disaggregation techniques

For ease of reproducibility, we use publicly available NILM tech-
niques: classical Combinatorial Optimization (CO) [20], Factorial-
Hidden Markov Model (FHMM) [21], Latent Bayesian Melding (LBM)
[22] and Super-state Hidden Markov Model (SSHMM) [16].

CO: The aggregate power consumption of a home accounts for the
sum of individual appliances consumption at time instant t.
Mathematically: = ∑ +

=
Y y et i

n
t
i

t1 , where Yt represents aggregate power
consumption at time t y, represents appliance consumption, n the total
number of appliances contributing to Yt and e represents the residual.
Hence, NILM can be formulated as a combinatorial optimization pro-
blem:

∑= −
=

e Y yarg min .t
e

t
i

n

t
i

1t (4)

At every time instant t, CO ensures that the optimal combination of
the set of ON appliances and their power consumption is found.

FHMM: FHMM is an extension of Hidden Markov Models. Each state
consists of multiple independent chains corresponding to the number of
appliances, and the output is represented as an addition function of all
hidden states.

LBM: LBM is an extension of additive FHMM. It adds extra con-
straints in the form of the appliance’s summary statistics including total
energy consumption, duration of use, and usage frequency.

SSHMM: Unlike FHMM, each state is computed as the Cartesian
product of all possible states of particular household appliances. It uses
sparse Viterbi algorithm to reduce the computational overhead.

4.4. Baseline performance of UNUM

To evaluate the efficacy of UNUM, we run UNUM on raw sub-
metered data available in all six homes. We refer the process of running
UNUM on submetered and NILM disaggregated data as UNUM_S and
UNUM_D respectively. Comparing their performance will indicate how
effective NILM power traces are in identifying anomalous behaviour.

4.5. Performance metrics

Following metrics were used to report the NILM and anomaly de-
tection accuracies:

(1) Appliance Normalized Error [63]: This metric captures the de-
viation of NILM readings from the submetered power readings for
an appliance

̂∑

∑
=

−y y

y
Appliance Normalized Error (ANE) t

t
a

t
a

t
t
a

(5)

where yt
a represents submetered power readings of appliance a at

time ̂t y, t represents estimated power readings from NILM. The
lower the ANE, the higher is the disaggregation accuracy for a.

(2) F-score: F-score is interpreted as weighted average of precision and
recall.

= ∗
∗

+

precision recall
precision recall

F-score 2
(6)

Specific to anomaly detection methods, precision measures the
percentage of correct anomalies to the total number of reported
anomalies and recall measures the percentage of correct anomalies
reported to the total number of anomalies present in a dataset. F-
score varies in the range [0–1]. The higher the score, the better is
the anomaly detection performance of algorithm.

Fig. 5. Effects of the number of standard deviations on Precision, Recall and F-score in AC, Refrigerator, Both Refrigerator and AC.

Fig. 6. AC submetered & NILM data of home 5. Mirror images show NILM
method has performed better.

Fig. 7. AC submetered & NILM data of home 3. This shows NILM method did
not recover anomaly signature fully.
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4.6. Experimental settings

Experiments were conducted under the following settings:

• UNUM: It is implemented in Python and the value for n was em-
pirically set to 1.5. We present a sensitivity analysis of n in Section 5.
Table 5 shows the data used for training and testing of UNUM.

• Disaggregation techniques: We use publicly available im-
plementations, NILMTK5(for CO and FHMM), LBM6, and SSHMM7

to get disaggregation results. Table 5 shows the division of training
and testing data used in the techniques. Further, we ensured that
training data duration was adequate for the disaggregation techni-
ques as there was no instance in the testing data which was not in
the training data.

5. Results

In this section, first, we report disaggregation performance of var-
ious existing NILM techniques. Then, with UNUM, we show how ef-
fective NILM data is for anomaly detection as compared to submetered
appliance data.

Table 3 reports ANE for different appliances of six homes using CO,
FHMM, LBM, and SSHMM separately. Appliance mapping of these
homes is given in Table 4. In Table 3, few entries are >1 meaning that
the disaggregation technique predicted an appliance consumed more
energy in total (sum) than it did. Considering ANE of AC (Appliance 1)
and refrigerator (Appliance 2) across all homes, overall, FHMM per-
forms better than remaining techniques. So, we chose FHMM for further
steps.

Analyzing disaggregated data for anomaly detection: During
testing phase, for each test day, first, we use FHMM technique to get
disaggregated appliance level data. Next, we use UNUM on each ap-
pliance’s data separately to identify anomalous instances.

Bottom row of Fig. 4 shows F-score, precision and recall for re-
frigerator with UNUM_D and UNUM_S. Overall, precision of UNUM_D
is found lower than UNUM_S because of high false positives as ANE is
higher for refrigerators as compared to ACs shown in Table 3. Higher
ANE in refrigerator results because NILM techniques find it difficult to
track small changes due to a refrigerator (±90–150 W approx.) as
compared to AC (> ± 1 kW) in the aggregate smart meter data. On the
other hand, UNUM_D recall is found to be better than UNUM_S because
high number of false positives in UNUM_D results a drop in the false
negatives.

Top row of Fig. 4 shows F-score, precision and recall for AC. The
figure shows UNUM_S was not able to achieve a precision of one be-
cause of our inability to find a unique value of n (in Eqs. (1)–(3)) for all
homes, as energy consumption pattern of each home is distinct. Simi-
larly, UNUM_S recall was not able to reach a score of one because some
of the defined anomalies (Table 2) were not considered as anomalous
due to smaller anomaly duration parameter. Table 6 shows the number
of missed anomalies in different homes using UNUM_S both appliance-
wise (AC, refrigerator) and anomaly type-wise (elongated and fre-
quent). It shows that UNUM_S often misses “frequent type” of anoma-
lies in AC in all the homes. The primary reason for all these missed
anomalies was their shorter duration. Duration is an important para-
meter in defining anomaly as shown in the Table 2. All the missed
anomalies have duration <8 hours; as a result, in a full test day’s
duration (day or night context) the nature of anomaly gets diluted with
the normal behaviour of appliance. So, UNUM_S fails to detect such
anomalies. Similarly, for refrigerator, the duration of missed anomalies
was found ⩽ 7 hours. However, inability of UNUM_S to reach precision

and recall of one should not affect our findings as both UNUM_S and
UNUM_D are run under similar conditions and our aim is to compare
their performance under such conditions.

Lower UNUM_D’s F-score in all homes indicates that it is difficult for
existing NILM techniques to find anomalous refrigerator instances.

5.1. Sensitive analysis of the number of standard deviations in UNUM

In Eqs. (1)–(3), we find only one controlling parameter, n, which
determines how many standard deviations from the historical con-
sumption should be labeled as an anomaly. Intuitively, n controls the
granularity of anomaly − small n means that an anomaly gets flagged if
a minor deviation is observed and vice versa. Fig. 5 shows the effect of a
change in the number n of standard deviations on F-score, Precision,
Recall while considering anomalies of AC, refrigerator, and both (re-
frigerator+AC). This figure shows that as n increases, recall decreases.
This decrease happens because as n increases, anomalies with a minor
deviation get treated as normal observations and hence false negatives
increase. Also, with the increase in n the chances for minor deviations
getting reflected as anomalies decrease which reduces false positives
and as a result precision increases. As mentioned before, the trade-off
between Precision and Recall can be used to set a particular value for n.
Higher precision ensures fewer false alarms.

6. Discussion

In this section, we discuss our findings through key research ques-
tions.

1. How do we know which NILM technique will perform better for
anomaly detection without using UNUM?

Our experiments show that a good number of anomalous instances
can be identified correctly if the ANE for an appliance is <0.1 as re-
ported in Table 3. Overall, ANE for AC is lowest as compared to re-
maining appliances, and the top row of Fig. 4 shows that AC anomalies
can be detected with a precision of 0.7 and recall of 0.5, approximately.
On the other hand, the bottom row of the Fig. 4 shows that precision is
pretty low (0.12 approx.) for refrigerator due to its higher ANE as re-
ported in Table 3.

This study demonstrates that we cannot directly use NILM techni-
ques in identifying anomalies correctly for AC or refrigerator if ANE is
high. Therefore, the choice of NILM technique is determined by ANE of
appliances of interest.

2.Why is F-score for AC in Home 5 the same for submetered and NILM
data as shown in Fig. 4?

Fig. 6 shows AC submetered and NILM data for Home 5. We can see
that FHMM was able to recover AC’s consumption signature from the
aggregate signal to an acceptable accuracy. The same F-score shows
that NILM has worked successfully for AC in Home 5 and hence UNUM
was able to recover all anomalous instances as compared to remaining
homes. The primary reason for this good NILM performance is the re-
maining appliances (refrigerator, laptop, TV and water filter) of the
home. All these appliances are distinct and low energy consuming ap-
pliances. As a result, FHMM resulted in better performance.

3. Since AC of Homes 3 and 5 have the same FHMM ANE (0.07) as
reported in Table 3, then why do they have different F-scores as shown in
Fig. 4?

Having the same ANE does not mean that the recovered appliance
signatures vary in the same pattern in both AC instances for the entire
duration. For example, Fig. 7 shows that in Home 3, on July 25, the
inserted anomaly signature was not recovered to a required detection
level in the NILM output. UNUM flags anomalies using tuple (D E σ, , e),
but computing the values for this tuple does not flag the day’s con-
sumption as anomalous, since the signature was not accurate. On the
other hand, no such case was found in Home 5 AC’s NILM output. Thus,
we conclude that if the appliance has an anomaly and the NILM tech-
nique did recover the anomalous signature then UNUM will flag usage

5 https://github.com/nilmtk/nilmtk.
6 https://github.com/MingjunZhong/LatentBayesianMelding.
7 https://github.com/smakonin/SparseNILM.
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as anomalous, otherwise it will not.

7. Conclusion & future work

Submetering, i.e., using separate energy monitors for each appli-
ance, to detect appliance-specific faulty behaviour is neither a scalable
nor practical solution. Instead, NILM or non-intrusive load dis-
aggregation using only as input, smart meter data, which has shown
substantial progress in accurately estimating appliance level energy
consumption, seems a good alternative to submetering for identifying
faulty appliance behaviour at scale. In order to determine whether the
reconstructed appliance-level signature generated by NILM is of suffi-
cient fidelity to accurately detect anomalous appliance load behaviour,
we used state-of-the-art NILM algorithms to generate appliance-level
signatures first, and then use proposed anomaly detection algorithm on
both obtained NILM as well as on submetered appliances’ traces.
Detailed evaluation shows that NILM output is often not accurate en-
ough for identifying anomalies, and hence calls for proposing anomaly
aware NILM methods, with some post-processing of NILM output sig-
nals to minimise the effect of noise.

We plan to extend the current work in following ways:

1. We evaluated UNUM on inserted anomalies due to the unavail-
ability of anomaly annotated dataset. In future, we plan to build a
system which will collect energy data and facilitate the collection of
ground truth by allowing consumers to log their abnormal ob-
servations. Eventually, this will result in a more practical and large
anomaly annotated dataset which can be used by the energy re-
search community.

2. We did not consider homes with multiple instances of the same
appliance. In future, we would like to evaluate NILM techniques on
multiple appliance instances.
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