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Abstract—With the growth of smart cities, more and more
buildings are now being instrumented with smart meters for
providing better energy efficiency for sustainable development.
Buildings consume around 39% of electrical energy worldwide
and studies report that wasteful consumer behavior such as
forgetting to switch off an appliance after use or using an
appliance with misconfigured settings adds about one-third to
buildings consumption. These instances result in deviations in
energy consumption as compared to its normal consumption
and are called as abnormalities. Detecting such abnormalities is
important for reducing energy wastage. Existing methods detect
abnormalities by analyzing smart meter data, however, they
result in a high number of false positive alarms. This inaccuracy
results in ignoring the alarms by building administrators which
also affects genuine alarms. Thus, reducing the false positive
alarms and making detection algorithms more accurate is a major
aim.

In this paper, we present our novel approach, called Monitor,
which first identifies patterns in past consumption data and
then uses these patterns to detect abnormalities. Our approach
requires smart meter data only and reduces the rate of false
positive alarms considerably. We have evaluated our approach
on 16 weeks smart meter data of real world buildings. The
comparison of this approach with existing approaches shows
that our approach improves the accuracy by up to 24% in best
scenario and on average by 14%. This improvement in accuracy
reduces the rate of false positive alarms significantly and makes
it more suitable for real-world deployments.

Index Terms—Smart cities, Energy Monitoring, Abnormality
Detection, Smart Meters

I. INTRODUCTION

As urbanization continues, energy-efficient buildings are
being constructed. At the same time, existing buildings are
being instrumented with smart meters to make them smart [1].
Unlike traditional billing meters, smart meters allow online
control to electrical utilities and logging of energy data (cur-
rent, power factor, etc) at the required frequency. Analyzing
this data allows providing tailored feedback to customers
through various energy efficiency programs. The United States
Energy Information Administration (EIA) reports that nearly
half of its electricity customers have smart meters installed1.

Buildings consume 39% of electrical energy globally, which
is expected to increase up to 43% by 2040 [2]. Around
one-third of this consumption is attributed to instances of
wasteful behavior by consumers, e.g., forgetting to switch
off water heater after use or using AC with mis-configured

1https://www.eia.gov/todayinenergy/detail.php?id=34012
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Fig. 1. Boxplots show power consumption distribution on 15 consecutive
days of a month. A subplot on top left shows detailed power consumption
pattern of three days. Marked region in the subplot highlights the abnormal
readings of day 9.

settings [3]. Such instances result in deviation from normal
consumption pattern in the energy data that is recorded by
smart meters. This deviation is referred as abnormality. For
example Figure 1 illustrates power consumption scenario of a
residential apartment, where the x-axis represents days and the
y-axis represents the power consumption. Each boxplot shows
the distribution of power consumption of a specific day. As
shown, the median power consumption is approximately same
(= 0.18 kW) for all days except day 9, which has higher (=
0.36 kW) consumption. Apart from high median value, day 9
also contains larger abnormal values as shown by × (crosses).
A subplot in the same figure on top left shows detailed hourly
power consumption pattern of day 9 along with 2 neighboring
days. The rectangular region in this subplot describes the
abnormal values of day 9, i.e., the power consumption was
significantly high from 1300 to 1700 hours. This significantly
higher power usage on day 9 is an abnormality and it makes
day 9 consumption as abnormal.

The identification of abnormalities is essential for reducing
energy2 wastage. Timely identification can be used to prompt
customers for corrective actions. As the scale of data grows,
automated methods are needed to analyze and provide action-
able feedback to customers as well as organizations. A study
shows that giving such feedback to customers results in up to

2words “power”, and “energy” are used interchangeably in this paper
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(a) Commercial Bldg 1 (b) Commercial Bldg 2 (c) Residential Bldg1 (d) Residential Bldg 2

Fig. 2. Hourly average energy usage of different commercial and residential buildings for a duration of one month. Each wiggly line represents energy usage
of a different day of month. The thick dark bands represent different dominant usage patterns, where each band consist of similar usage days.

8.4% energy savings [4]. However, for feedback to become
effective, it is important to accurately identify instances of
abnormality so as to avoid cases of false positive alarms.

A simple approach to detect abnormalities is to use
threshold-based monitoring. In this approach, an alarm gen-
erates when the energy usage is higher than the defined
threshold. But, this approach does not cope well with dynamic
energy usage behavior of buildings. Balakrishnan et al. report
that in the campus of the University of California, San Diego,
this approach resulted in more than 10,000 alarms per day [5].
The high number of alarms were then ignored by the building
administrators thus defeating the purpose of identifying abnor-
malities. Thus it is important to develop novel approaches that
adapt with dynamic energy usage and are more accurate i.e.
the rate of false positive alarms is low. Existing methods detect
an abnormality on a particular day by considering data from
all previous days. However, in doing so, these methods ignore
the consumption patterns and treat all days equally. We show
in Section VI that ignoring patterns existing in consumption
affects the accuracy and leads to high false positive alarms.

This paper presents Monitor, which is an extension of our
earlier work presented in the poster session of ACM e-Energy
2016 [6]. In our approach, we first identify prominent patterns
present in past consumption; thereafter we cluster days in
different groups as per their pattern; at the end, we classify
an instance as abnormal if that instance differs significantly
from the prominent pattern of the cluster. Our approach of
first identifying patterns resembles closely with the real-world
usage, e.g., in commercial settings often working weekdays
have a very different and distinct pattern than non-working
weekends or holidays and even in residential apartments we
can see distinct patterns when the occupants are in house
whole day or while they are out for regular work (say office
hours). For clustering days as per their patterns, we use Local
Outlier Factor (LOF) [7]. The LOF first clusters all past
days into several clusters having different energy consumption
patterns. Next, it computes abnormality score in the range [0 –
1] for each day within a specific cluster by using other days of
the same cluster only. Therefore, days in other clusters do not
affect abnormality score calculation. For Example, Figure 2(a)
shows energy consumption on different days of a commercial
building. Days of a different type (working, non-working)
result in different clusters where days of one type usually go

into one cluster. For example, Cluster C1 represent energy
consumption of working days and C2 that of non-working
days only. Both of these clusters differ due to inherent day
type context. Existing methods would detect an abnormality
on a particular day with respect to all past days which results
in a large number of false alarms. Our proposed approach
handles this limitation by first dividing days into relevant
clusters. Afterward, the abnormality score is calculated locally
and days in the remaining clusters do not affect abnormality
score calculation.

For evaluation, We use a dataset comprising of different
loads at IIIT-Delhi Institute campus that show different usage
patterns, thus allowing us the opportunity to test our approach
on diverse energy consumption patterns. For generalizability,
we refer loads to different energy consuming sources such
as residential apartments or HVAC chiller. The energy usage
pattern of commercial and residential buildings (loads) is
different as shown in Figure 2. The commercial building shows
1–3 distinct patterns while among the residential buildings
only one of them show a pattern. Further, we correlate the
performance of Monitor with two existing Abnormality De-
tection Methods (ADM), namely, ADM-I [8] and ADM-II [9].
Our approach, Monitor improves the accuracy in detecting
abnormality up to 24% in best scenario and on average by
14%. The improved accuracy of Monitor results in lesser
false alarms as compared to the existing approaches. The
contributions of this paper are:

• We propose a novel approach Monitor to detect abnormal
instances of energy usage using smart meter data only.

• We evaluate Monitor using commercial and residential
buildings energy consumption data (Section VI).

• We analyze the performance of Monitor with other two
existing abnormality detection approaches, ADM-I and
ADM-II (Section VI-D), and show an improvement in
accuracy by 24% in best scenario and on average by 14%.

II. RELATED WORK

Abnormality detection is being studied actively in various
application domains such as network intrusion detection, bank
fraud detection, safety critical systems [10], [11], [12]. Specific
to energy domain, Srinivas et al. explain different abnormality
detection approaches [13].

Among statistical approaches, Seem uses similar power
consuming days of a week to detect abnormal instances; such



days are identified using features like daily average, and peak
energy usage [14]. While as, in [15], Seem uses statistical
features, mean and standard deviation, to detect abnormal
instances. This algorithm uses historical data to decide whether
consumed energy is abnormal or not. Similarly, Chou et al. flag
power usage of a day as abnormal if it deviates two standard
deviations from the predicted usage [16].

Machine learning approaches were introduced to improve
the state-of-the-art. These approaches mostly build adaptive
models according to the energy consumption data; and the
energy usage instances which do not follow model behavior
are labeled as abnormal. Among machine learning approaches,
Chen et al. have used clustering approach [17]. They first
transformed numeric energy data to symbolic representation,
and later used Suffix trees to find different patterns in energy
usage [18]. Finally, clustering is used to identify abnormal
instances. While Li et al. have used classification approach,
where a day’s consumption is flagged as abnormal if it does
not follow the classification model built from the training
data [19]. Zhang et al. have used regression to identify abnor-
mal energy consumption days before energy prediction [20].
Bellala et al. have proposed a density based abnormality de-
tection approach for commercial buildings [8]. Hourly power
consumption readings of each day for n consecutive days were
used to identify abnormal instances.

Among various contextual based abnormality detection ap-
proaches [21], [22], [9], Arjunan et al. have used temporal
information to detect abnormal instances [9]. They grouped
meters from a same building or from a same geographical
location and finally used the group information to adjust
abnormality score for each day. While as, Fontugne et al. have
proposed Strip, Bind and Search (SBS) – an unsupervised ab-
normality detection method [23]. SBS explores the relationship
among different appliances (AC, fan, lights, computer) usage
behavior, i.e., it groups the devices used at the same time
in a particular setting. These intrinsic device relationships are
uncovered using Empirical Mode Decomposition (EMD) [24].
These relationships change with seasonality and hence are
purely contextual. A difference observed in any group behavior
is flagged as an abnormality. Similarly, Balakrishnan et al. pro-
posed Model, Cluster and Compare, another technique for
fault diagnosis and detection [5]. It explores the relationship
between different HVAC zones and builds models for similar
zones to detect faults.

The proposed approach Monitor matches with works [8],
[9], as both of these use meter data only and compute
abnormality score day wise. Further, previous works have been
extensively tested either under commercial [19], [8], [25], [16],
[9], [26], [27], [14] or residential settings [17], [20], [9] only.
We evaluate our approach under both settings and show that
Monitor reduces FPR significantly as compared to [8], [9].

III. METHODOLOGY

Monitor takes time series power readings from a smart meter
as input, and then for each day, abnormality score is computed
separately. The abnormality score varies between 0 and 1. The

Algorithm 1: Steps of Monitor
Input: X[M ]: Time series power consumption data of

M days.
Output: A[M ]: Abnormality score for each day in the

range [0 – 1].
1 Transform input time series sequence X into Matrix

Y [M,T ] where M represents number of days and T
represents number of power readings per day.

2 Calculate DFT for each row of Y separately as,
Y

′
[i, ] = DFT (Y [i, ]),∀i ∈ {1, · · · ,M}.

3 Calculate dissimilarity matrix ∆[M,M ] for all pairs of
M days with Euclidean distance measure, i.e.,
∆[i, j] = [

∑T
k=1(Y

′
[i, k]− Y

′
[j, k])2]1/2 where

i, j ∈ {1, · · · ,M}
4 Reduce dimensionality of ∆ from M to 2 using MDS

technique, i.e.,
∆̂[M, 2] = MDS(∆[M,M ])

5 Calculate LOF L[M,K] using ∆̂[M, 2] for various K,
where K refers to the number of neighbors

6 Calculate final LOF score for each day M as,
L̂[i] = max(L[i, k]), k ∈ {1, · · · ,K},∀i ∈ {1, · · · ,M}

7 Standardize L̂[M ] in the range [0− 1] to calculate
abnormality score for each day as
A[M ] = Standardise(L̂[M ])

higher the score, the higher are the chances of the day being
abnormal. Monitor consists of three steps. Algorithm 1 shows
stepwise execution of Monitor.
Step-I: In this step, firstly, it transforms input power con-
sumption data X of M days into a Matrix Y such that each
row of Y contains power consumption of a consecutive day
consisting of T readings. Next, it computes frequency density
vector corresponding to each row of Y separately as Matrix
Y

′
, since the data is periodic and it is found that frequency

representation is more sensitive to abnormalities [28], [29].
Frequency representation is obtained using Discrete Fourier
Transform (DFT) function [30]. It considers only magnitude
part of DFT for further calculations. This contains all the
necessary information of power consumption pattern.
Step-II: This step compares power consumption across all
the input days of Step-I (Lines 3-4). Firstly, it computes the
dissimilarity matrix ∆[M,M ] by calculating the Euclidean
distance between each pair of M days of Y

′
. Euclidean

distance reflects the underlying similarity in energy usage
data. Next, it reduces the dimensionality of ∆[M,M ] to
∆̂[M, 2] by using Multidimensional Scaling (MDS) algorithm
as the following step of Monitor works on lower-dimensional
data [31]. MDS essentially provides a lower dimensional
representation of higher (T ) dimensional data. Also, MDS
plots result in better visualization of energy usage among
different days. Figure 3 shows corresponding MDS plots of
different loads shown in Figure 2. Each • on the plot represents
power consumption of a different day and a number below
each • represents the respective day of the month. Each plot
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Fig. 3. Multidimensional Scaling (MDS) plots of selected commercial and residential loads. Each • represents a different day and the distribution of • shows
the variation in the average power consumption on different days of a month. Circles represent clusters, i.e., days with similar power consumption pattern.

shows a different distribution of •, meaning each load follows
a different energy consumption pattern. The distribution does
not reflect the lower or higher power consumption days but
shows the variation in power usage on various days. Days
within a cluster consume energy in the similar pattern and
different from the days in remaining clusters.
Step-III: This step calculates the abnormality score for each
day power consumption (Lines 5-7). It uses LOF to calculate
the abnormality score, which has been extensively used in
various domains such as network intrusion detection [32]. LOF
takes ∆̂[M, 2] as input and represents each row with a single
observation thus ∆̂[M, 2] reduces to M observations. Next,
it computes density for each observation with its k neighbors.
Finally, it computes abnormality score for each observation by
comparing its density with neighboring observations. Observa-
tions with significantly lower density as compared to neighbors
get higher abnormality score.

LOF scores do not have a fixed range, so to interpret
the scores Monitor standardizes output LOF scores using the
approach in [33]. This approach first performs regularization
and then normalization to output scores between 0 and 1.

To compute abnormality score, k value is specified (Line 5)
in LOF. A single specific value of k cannot be used for all
the loads as each load follows different energy usage pattern
and hence result in different data distribution. Therefore, range
of k values are used to calculate LOF scores, similar to
the approach in [34]. The final LOF score considered is
the maximum of LOF scores calculated with different k’s
as suggested in [7]. Please refer section VI-C for detailed
information about selection of k and the final LOF score.

IV. DATASET

We use a real-world dataset to evaluate the performance
of the Monitor. This dataset contains power consumption
readings of both the residential and commercial loads at the
IIIT-D campus.

The residential dataset contains energy consumption data
of faculty apartments on the campus. Each apartment consists
of three bedrooms, a hall, and a kitchen. These apartments
are equipped with common home appliances, such as lighting
systems, refrigerator, heaters, and air-conditioners. A smart
meter is installed for each apartment separately. The residen-
tial apartments remain operative throughout the week (24 x
7). The apartments for our experiments were selected on the

basis of: i) apartments with no missing readings, ii) apartments
showing diversity. Diversity (Figure 2) refers to different
power consumption patterns and we focus on this to check
the competency of Monitor.

For the commercial dataset, we chose HVAC chiller, Lecture
block due to two reasons: i) these loads mostly follow regular
working hours, and ii) these are high energy consuming loads.
The Lecture block comprises of 12 classrooms spread over the
three floors. The Lecture block and HVAC chiller run usually
from 0800 - 1700 hours on weekdays.

Our dataset represents energy usage across buildings be-
cause it includes all the four possible usage scenarios: (i) com-
mercial loads following specific limited patterns across days
(Figure 3(a)), (ii) commercial loads following approximate
diverse usage across days (Figure 3(b)), (iii) residential loads
following specific limited patterns across days (Figure 3(c)),
and (iv) residential loads following approximate diverse usage
across days (Figure 3(d)).

The sampling rate of smart meters is 30 seconds to get
the fine-grained power consumption details. The data from
all the smart meters on campus are stored in a centralized
meter data aggregation system using an open source system,
sMAP [35]. This dataset consists of continuous sixteen weeks
of data starting from Ist Aug. till 29th Nov. 2015. We chose
this period of the year primarily for two reasons: (i) This is
a period of the academic semester, so everyone is on campus
and every electric consuming equipment remains operational.
(ii) This period of the year shows seasonality effect, where the
months of August and September are hot and are most energy
consuming while the remaining two months do not normally
require AC and are low energy consuming months.

We downsampled the data to hourly average readings as
the power utilities generally collect data at hourly scale [36].
Therefore, the motivation is to check the performance of the
Monitor on any diverse dataset collected by various power
utilities. We have released our dataset3 for the public use.

V. EXPERIMENTAL SETUP

Baseline Methods: We correlate the performance of Moni-
tor with two baseline methods, i.e., ADM-I [8] and ADM-
II [9]. We chose these well-known methods because both of
these (i) use aggregate hourly meter readings, and (ii) compute
abnormality score corresponding to each day. Both ADM-I and

3https://drive.google.com/drive/folders/0ByK27OBInnBnR1N0WEZBbVV5aDQ
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(a) Apartment 1 (b) Apartment 2
Fig. 4. The raw power consumption of two residential apartments for a month and abnormality scores computed using ADM-I, ADM-II and Monitor

ADM-II use energy readings of n consecutive days to identify
abnormal instances. For each day energy consumption, ADM-
I uses k-NN (nearest neighbor) to compute the density and
finally assigns an abnormality score with a global day having
highest density. ADM-II is a clustering based abnormality
detection approach. It uses k-medoid clustering algorithm and
the number of clusters in data are computed using Partitioning
Around Medoids algorithm.

Physical Interpretation of k: In Monitor and the base-
line methods, we need k-nearest neighbors to calculate the
abnormality score for each observation that corresponds to
entire day energy usage. k nearest neighbors of an observation
represent k other observations which deviate less from the con-
sidered observation as compared to remaining observations.
Figure 3(c) shows that energy usage on day 21 differs less from
days 20 and 22 as compared to remaining days on the plot.
Therefore for day 21, days 20 and 22 represent two nearest
neighbors.

For Monitor, k value is set between 4 - 7, as suggested to
use a range of k values in [7]. Please refer section VI-C for
sensitive analysis of k. For ADM-I, k is set to 6 as computed
with the formula in the paper [8]. In ADM-II, an optimal k
value is determined automatically using Partitioning Around
Medoids algorithm.
Interpretation of Final Abnormality Score: The Monitor,
ADM-I, and ADM-II calculate abnormality score for the
energy usage of each day. The abnormality score is interpreted
in two different ways: i) Top-s: In this method, a ranked
list of abnormality score is sorted in the decreasing order,
and then the building administrator chooses upper s days as
being abnormal, ii) Threshold-based: In this method, building
administrator selects a threshold on abnormality score, and
then the days with score ≥ threshold are declared as abnormal.
The range of the threshold is [0 – 1], similar to the abnormality

score defined in [11], [12].
We use the threshold-based method as it gives finer control

to an administrator, i.e., an administrator can check abnormali-
ties of any severity level which top-s does not allow. Further, in
top-s, correct information is required to extract only abnormal
instances [34]. We use a threshold value of 0.75 in all the three
approaches to maintain consistency. Area Under Curve (AUC)
plots in Section VI-D shows the effect of threshold as these
plots are drawn using all possible thresholds dynamically and
hence do not limit the applicability of Monitor performance
to a static threshold of 0.75 [37].
Abnormality Verification: Collecting ground truth informa-
tion in the energy domain is an open issue. There is no
publicly available abnormality annotated dataset, so all ex-
isting works consult building administrator (BA) to mark the
ground truth [8], [9]. Accordingly, we obtained ground truth
information from our BA. He analyzed the raw power readings
manually (visual inspection) and marked all the abnormal
days using historical usage pattern and the service log book
entries. We will discuss the reasons for abnormal behavior as
mentioned by the BA on a case by case basis.
Experimental Settings: For all loads, abnormality score for
each day was computed from August 1st 2015 to November
29th 2015 using all the three methods. All methods were
run on a rolling basis, and the window size was set to
one month. The R implementation of ADM-II is publicly4

available, Monitor and ADM-I were implemented in R too.
In Monitor, Rlof package was used for LOF, and for LOF
score standardization HighDimOut R package was used [38],
[39]. We have created a publicly-available implementation of
Monitor on GitHub5.

4https://github.com/pandarasamy/anomaly detection
5https://github.com/loneharoon/LoF Anomaly
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Fig. 5. MDS plot along with power consumption pattern of selected days of
Apartment 1. Encircled days represent abnormal instances.

Metric Method Apart- Apart- Lecture Chiller
ment 1 ment 2 Block

False
Positives

ADM-I 15 9 7 20
ADM-II 0 1 2 2
Monitor 0 2 0 0

False
Negatives

ADM-I 0 0 2 0
ADM-II 1 1 2 2
Monitor 1 1 3 1

TABLE I
FALSE POSITIVES AND FALSE NEGATIVES FOUND AT A THRESHOLD OF

0.75 ABNORMALITY SCORE WITH DIFFERENT METHODS.

VI. EXPERIMENTAL RESULTS

This section initially presents the analysis of Monitor on
residential and commercial loads, and later explains the sensi-
tivity analysis of k. At the end, performance comparison of
Monitor with baseline methods ADM-I and ADM-II using
standard Area Under Curve (AUC) [37] metric is presented.

A. Analysis of residential building data

As we observe in Figure 4(a), hourly average raw power
readings of apartment 1 shows two distinct patterns: (i) power
consumption is below 1000 watts from Aug. 1 to Aug. 25
excluding days 13, 20, 21, and 22, (ii) power consumption is
above 1000 watts from Aug. 26 until Aug. 30.

It indicates that days of the considered month should result
in two distinct clusters corresponding to two usage patterns
found. This observation is confirmed by the MDS plot shown
in Figure 5.

From raw power analysis, day 13 is abnormal due to
unusual high power consumption between 1430 - 1620 hours
as shown in a subplot of Figure 5. Similarly, days 20, 21,
and 22 are abnormal due to high power usage during night
hours. Discussions with the apartment owner revealed all these
abnormal instances were due to AC usage during unusual day
hours.

MDS Dimension−1

M
DS

 D
im

en
sio

n−
2

1

2

34567

89

1011121314

1516

17

18

19

20

21

22

23

2425262728

2930

Aug 03
00:00

Aug 03
05:00

Aug 03
10:00

Aug 03
15:00

Aug 03
20:00

0
20

40
60

80
10

0
12

0

Aug. 3 (weekday − Normal usage)

KW

Aug 08
00:00

Aug 08
05:00

Aug 08
10:00

Aug 08
15:00

Aug 08
20:00

0.
55

0.
56

0.
57

0.
58

0.
59

Aug. 8 (weekend − Normal usage)

KW

Aug 21
00:00

Aug 21
05:00

Aug 21
10:00

Aug 21
15:00

Aug 21
20:00

0
20

40
60

80
10

0
12

0

Aug. 21 (weekday − Irregular usage time)

KW

Fig. 6. MDS plot along with power consumption pattern of selected days of
Chiller. Encircled days represent abnormal instances.

Contrarily, the raw power usage of apartment 2 in Fig-
ure 4(b) does not show any distinct pattern across days;
as a result, the MDS plot in Figure 3(d) does not lead to
any separate cluster. The absence of any pattern in power
consumption makes it difficult to identify abnormal days
accurately. But, in Figure 3(d) we find days 10, 13, 15, 27,
and 31 to be different from the rest, as these days are far away
from the remaining days in the plot. On manual analysis of
raw power readings and discussions with the apartment owner,
we found that on these days AC was running for a longer
duration (day 31) continuously and at irregular intervals of
the day (days 10, 13, 15, and 27).

Table I shows false positives and false negatives for both
residential loads using Monitor, ADM-I and ADM-II. In both
Apartments, Monitor resulted in a single false negative at a
threshold of 0.75. These false negatives are day 21 of Apart-
ment 1 and day 13 of Apartment 2. Monitor has assigned an
abnormality score of 0.74 to both of these days as shown in
Figure 4(a) and 4(b), but as the threshold is set to 0.75 both
of them resulted as false negatives. Total number of abnormal
days in apartment 1 and apartment 2 are 4 (days 13, 20, 21,
22) and 4 (days 15, 27, 30, 31) respectively. We discuss the
cause of high false positives in the ADM-I in section VI-D.

B. Analysis of commercial buildings data

Figure 6 shows the MDS plot of an HVAC chiller. It depicts
two clusters, which correspond to energy usage of weekends
and weekdays. It also shows that days 18, 19, and 21 are far
from both the clusters centers. On examining the raw energy
usage of 21, we found that Chiller was working through late
night hours as depicted in the upper right plot of Figure 6.
During conversations with the building management system
(BMS) operator, we were informed that in IIIT-Delhi campus
two HVAC chillers are installed, which run in alternate time
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Fig. 7. The raw power consumption of two commercial loads for a month and abnormality scores computed using ADM-I, ADM-II and the Monitor

periods. But, on days 18, 19 and 21 both chillers were running
simultaneously for a duration of 2 hours due to high demand,
and this resulted in abnormalities on respective days.

In comparison to Chiller consumption, we find one tiny,
dense cluster in the power consumption of Lecture block as
shown in Figure 3(b). This cluster represents the weekend days
as the power consumption is 0 for all these days. As the lecture
block consists of 12 classrooms, it shows more variation in
the power consumption due to the difference in the timetable
for each day and due to dynamic usage patterns (either all
fans/lights are on or a few). Furthermore, we found that
on some days either lights/fan were switched off completely
during lunch hours or hack-nights were organized. This results
in dynamic usage behavior on the different days of a month.

Figure 3(b) shows that days 21 and 22 are far from the
remaining days, and Figure 7(b) indicates that the Monitor as-
signs high abnormality scores to days 16 and 22. On analyzing
the raw power traces of these days we found: i) on day 16,
there was a continuous usage of 500 watts (see raw power in
Figure 7(b)) from 0000 - 0800 hours, which is unusual and
hence high abnormality score is assigned. During discussions
with the BA, we found that on some floor lights and fans
were not switched off completely. ii) on day 22, usual power
usage was extended from 1700 - 2100 hours. From the institute
calendar, we found day 22 as Institute’s technical festival day
and hence resulted in extra usage. This analysis shows that
usage on day 16 during morning hours was energy wastage,
and the Monitor detected it.

Table I shows false positives and false negatives for both
loads with Monitor, ADM-I and ADM-II. For these loads, we
do not find a single false positive with Monitor while ADM-I
contains false positives in higher proportion. Total number of
abnormal days in chiller and lecture block are 4 (days 18, 19,
20, 21) and 5 (days 14, 15, 16, 21, 22) respectively.

We differentiate the abnormalities detected by various meth-
ods as actionable and non-actionable. Actionable abnormali-
ties represent energy wastage instances that can be eliminated
upon timely detection. While as non-actionable represent sig-
nificantly high energy usage instances that result due to some
genuine cause. Although non-actionable abnormalities cannot
be eliminated but their detection helps in understanding the
cause of high electricity bills and thus provide the knobs to
consumers for optimal appliance settings. Our results show
both actionable (Day 16, Lecture block) and non-actionable
abnormalities (Apartments 1 & 2, Chiller), but without dis-
criminating the nature of abnormality detected we proved that
Monitor is capable to detect both type of abnormalities.

C. Sensitivity Analysis

Optimal value of k: The performance of the Monitor de-
pends upon k value, where k refers to the numbers of neighbors
of an observation. We remove the sensitivity of Monitor on
k by using ensemble approach as suggested in [34], [7]. In
this approach, abnormality score is computed for a range of
k values instead on a single value of k. This approach is
important as it ensures that not a specific k value affects the
abnormality score of an object. We used k values in the range
[4 – 7]. To find the lower limit, we varied k in the range [2 –
10] for all the loads. On analyzing the results, we found that
abnormality scores approximately remain same for the k range
[2 – 4], so to reduce the computing cycles we set lower limit =
4. And we set higher limit = 7 owing to the reason that in most
cases energy usage follows a weekly pattern due to seasonality
or occupancy behavior. This means that on average the energy
usage should follow similar usage pattern for 7 days.

Figure 8 explains the effect of diversity on abnormality
score with different k’s. We observe two patterns in the Figure:
i) low variability score with different k, e.g., days 1 - 9, and
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26 - 31, ii) high variability in score with different k, e.g.,
mostly days between 10 - 25. We illustrate the effect of k on
abnormality score as: assume abnormality threshold is set to
0.75, then days with abnormality score ≥ 0.75 are considered
as abnormal. With the assumed threshold and the k value of
4 or 5, day 13 is non-abnormal while as day 20 is abnormal;
on the other hand with the k value of 7, day 13 is abnormal
while as day 20 is normal. But, we know both of these days
are abnormal from the ground truth information (Section V).
This ambiguity shows that we can not rely on a particular k
value, hence we should use ensemble approach as suggested
by [7], [34] to find the outlying nature of an object.

Final Abnormality Score: We find different methods to com-

bine the abnormality scores corresponding to different k, which
include: i) Breadth First Scheme (BFS) [40], ii) Cumulative
sum [40], iii) Mean [7], and iv) Maximum value [7]. In
both the BFS and the Cumulative sum, abnormality scores on
different k are sorted and ranked according to decreasing order
of their magnitudes. We empirically computed abnormality
scores with all the four, and we chose Maximum value method
over the rest as it always highlights the outlying instance,
if an object behaves as an abnormal with any k. Also, the
maximum value method is least sensitive to the cut-off value
considered for the objects to be abnormal. For days 13, 21
and 22, Figure 9 shows the effect of maximum value method
on abnormality score in comparison with other methods. The
mean and cumulative sum dilutes the outlying nature of an
object as shown in Figure 9. While as, in some datasets we
found BFS is sensitive to the order of abnormality detection
method, and this is highlighted in [40].

D. Performance Comparison

We use Area under curve (AUC) [37] to correlate the perfor-
mance of Monitor with the baseline methods. Figure 10 shows
receiver operating characteristic (ROC) curves for all loads
with different methods. The true positive rate (TPR) in ROC
curve shows the number of correctly labeled abnormalities
while the false positive rate (FPR) depicts number of normal
data points wrongly labeled as abnormal. The ideal ROC have
TPR of 1 and FPR of 0. The performance is measured from
ROC in terms of AUC value, which ranges between 0 and 1.
The higher the value, the better is the performance [37].

Table II shows AUC values for Monitor, ADM-I and
ADM-II on different loads. For instance, AUC value for
Monitor, ADM-I and ADM-II in chiller is 0.89, 0.65, and
0.69 respectively. It is observed from the AUC values that
the Monitor performs better than both ADM-I and ADM-II.
Higher AUC of Monitor is attributed to its lower FPR as
compared to the baseline methods. Note that ROC curve is
not drawn at a particular threshold. Instead, it uses different
thresholds automatically [37]. Table III summarizes percentage
improvement in the AUC values of Monitor over the baseline
methods.
1. Insights: Figures 4 and 7 show calculated abnormality
scores by Monitor, ADM-I and ADM-II and Figure 3 shows
the corresponding MDS plots. While looking at the MDS
plots and the corresponding assigned abnormality scores by the
ADM-I we infer that “if there are clusters, i.e., dense clusters
(e.g., Chiller, Apartment 1) found in power consumption, then
the ADM-I results in high false positive rate”. While as with
the Monitor we do not find any impact of presence or absence
of clusters on the abnormality score calculation. This inference
shows that Monitor can be used in any similar type of energy
consumption scenario as shown in Figure 3, ensuring minimal
FPR.
2. High False Positive Rate in ADM-I: The abnormality
score, a probability value is calculated by using a density
estimation algorithm, namely k-NN. For each day’s power
consumption (observation), firstly density is calculated using
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Method Chiller Lecture Apart- Apart-
Block ment 1 ment 2

Monitor 0.89 0.83 1.00 0.98
ADM-I 0.65 0.67 0.87 0.95
ADM-II 0.69 0.75 0.90 0.85

TABLE II
AREA UNDER CURVE (AUC) VALUES FOR DIFFERENT LOADS USING

Monitor, ADM-I, AND ADM-II

Chiller Lecture Apart- Apart- Average
Block ment 1 ment 2

24 14 10 8 14
TABLE III

AUC PERCENTAGE IMPROVEMENT IN Monitor OVER ADM-I & ADM-II

k-NN, and then probability value (abnormality score) is cal-
culated with respect to the observation having highest density.
This essentially means that a single observation with highest
density influences the abnormality scores of all the remaining
observations in a window.

We illustrate this with an example: In Chiller (Figure 3(a)),
we found that the day 2 has highest local density of 13.7
and the average density of days (2, 8, 9, 15, 16, 23, 29, and
30) clustered in the same cluster as of day 2 is 9.17. Also,
the average density of remaining 22 days of the month is
0.00020. With this statistics, it is clear that on average, each
week/working day is given an abnormality score of 0.99 (= 1
- 0.00020/13.7) and each non-working day is given 0.33 (= 1-
9.17/13.7). This example illustrates that ADM-I should not be
used in scenarios where we have 1 − 2 clear dense clusters,
as in the case of Chiller. In such scenarios, an observation
belonging to the densest cluster always affect the abnormality
score calculation badly, and hence results in high FPR.
3. High Accuracy of Monitor: The clusters in data essentially

depict that the points within a cluster behave similarly and
different from the points in other clusters. The denser a cluster
is, higher is the similarity between data points. Therefore,
density is the most important metric to find similar data points.

Monitor takes advantage of this observation and uses well-
known density-based LOF technique to identify abnormal

days [7]. LOF uses only nearby points to calculate the ab-
normality score of any data point, i.e., only points within a
cluster are used to calculate score. We elucidate this further
with an example as - consider Figure 3(a) in which we find
three clusters C1 (represents weekend days of Aug. 2015)
and C2 (working days of Aug. 2015) and C3 (abnormal
days). There is no relation between C1 and C2 since both
of these represent energy consumption of two different type
of days. Hence, we should not use data points of one cluster
to calculate abnormality score of some other data point in a
different cluster. LOF uses the same concept and hence results
in less FPR.

VII. LIMITATIONS AND FUTURE WORK

Monitor outperforms existing ADM-I and ADM-II by re-
ducing the number of false alarms, but we believe there is
further scope to improve the applicability of Monitor in real-
world settings. The current implementation of Monitor has
following limitations:

1) Monitor results in high false negative rate (FNR) at lower
data frequencies, say at 4 hourly or daily average. This is
because averaging smoothes out the effect of abnormal
observations. Therefore, it is best to use Monitor on
hourly or high-frequency data.

2) Number of detected abnormalities depends on the thresh-
old chosen of abnormality score. Lower threshold in-
creases FPR while higher threshold increases FNR. This
is not a limitation but it gives a control to the adminis-
trator to filter abnormalities of different severity levels.

3) It computes abnormality score for each day after having
observed the energy consumption trend for the day. This
approach has two disadvantages: i) if a day gets high
abnormality score, building administrator has to manually
go through the entire day (24 hours) energy consumption
log to find the exact abnormal usage time interval and to
find the exact cause; ii) if abnormality occurs in the early
hours of day, it results in energy wastage for the entire
day. To mitigate these disadvantages, in the future, we
plan to automate the labeling of abnormalities as well as
reduce the resolution from 24 hours to one hour.



VIII. CONCLUSION

Automated abnormality detection approaches detect energy
wastages timely. Unfortunately, building administrators often
ignore the alarms due to their high false positive alarm rate.
In this process, genuine (true positives) alarms may also get
ignored leading to energy wastage. This unreliability makes
the existing abnormality detection approaches useless. This
paper presented Monitor – a reliable abnormality detection
approach which reduces false alarms to a greater extent.
The lesser rate of false alarms makes Monitor applicable
for real-world building management systems. We evaluated
Monitor on a diverse set of loads which exhibit different
energy consumption patterns. Monitor improves the accuracy
of abnormality detection by up to 24% in best scenario and
on average by 14%.
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