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ABSTRACT
Electrical utilities depend on Demand Response programs to man-
age peak loads by incentivizing consumers to voluntarily curtail
a portion of their load during a specified period. Utilities first cat-
egorize consumers based on their energy consumption patterns
into different clusters and then request consumers of a particular
cluster to participate in the demand response program. At a coarse
level, clustering approaches do well, but we may not be able to
correctly predict which cluster’s profile will fit that day’s power
availability. We address this issue by examining the consistency of
consumer’s consumption patterns across several consecutive days.
We demonstrate that measuring consistency quantitatively helps
to understand predictability of consumer’s energy consumption.

In the rest of the paper, we provide details of our proposed
consistency metric. Further, we propose a methodology to select a
few consumers among the consistent ones such that they have a
peak at the time specified by the demand response program. We
validate our approach using real-world energy consumption data
from residential buildings.

CCS CONCEPTS
• General and reference → Metrics; • Mathematics of com-
puting → Time series analysis;
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1 INTRODUCTION
Backup generators used by electricity grid authorities to meet the
peak demand are inefficient, expensive, and extremely polluting.
A Demand Response (DR) program is run by utilities to curtail a
portion of the peak demand by shifting the energy usage. Advanced
Metering Infrastructure (AMI) meters introduced early for billing
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purposes were seen as enablers of DR programs [7]. A recent Fed-
eral Energy Regulatory Commission (FERC) report shows a 40.6%
penetration rate of AMI meters in the US and is still going on [10].
It further highlights that DR programs in 2014 resulted in peak
reduction of 31 GW in the US with a breakdown of 26%, 20%, 53%
in residential, commercial, and industrial sectors respectively. AMI
meters make it possible to log electricity consumption data for
analysis and to extract insights about usage pattern, energy saving
opportunities, malfunctioning symptoms, and failures of energy
consuming appliances [2–4, 6, 12].

ADR program is run to ensure grid stability and avoid brownouts1.
To ensure the success of DR, utilities target a group of consumers
who voluntarily participate or are encouraged to deter their con-
sumption by curtailment or to defer elastic loads. In return, partici-
pating consumers are provided incentives in the form of reduced
bills or with direct payments [8]. The selected consumers consume
a significant amount of energy and use deferrable appliances at DR
time normally. The usage behavior of a consumer is easily obtained
with the analysis of smart meter data [1]. A recent work identifies
the potential set of deferrable appliances, which can be used as
criteria for the selection of consumers in DR [11].

Utilities identify DR consumers by clustering all consumers ac-
cording to their similarities in consumption patterns. A simple
approach to find the set of DR consumers is to select those clusters
which show peak consumption at the desired DR time. Utilities be-
lieve that selected consumers are likely to follow the same behavior
on DR day, which usually happens to be the next day. Accordingly,
selected consumers are informed one day ahead of the actual DR
run. It is possible that a selected consumer was wrongly classified
for DR due to clustering approach and hence will get the perks
without any load curtailment. In these cases, it is a loss for a utility
and gain for a consumer. Although the clustering approach identi-
fies a group of DR consumers at a coarse level, clustering criteria
do not consider the consistency of a consumer with respect to the
consumption pattern across several consecutive days. Quantifying
consistency in consumption pattern is important as it indicates the
likelihood of a consumer following the historical pattern on DR
day and time.

In this paper
(1) We propose a consistencymetric which only considers historical

consumption data of several days. This metric is computed by
calculating statistical features like mean and standard deviation.

(2) We develop a methodology to select the consumers who have
peaks at desired DR time among the consistent consumers. It is
possible that a consistent consumer has peaks at different times
of day instead of target DR time.

1https://goo.gl/J0MFw8
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Figure 1: Energy consumption patterns of four consumers on six consecutive days. Each wiggly line represents the hourly
energy consumption of a consumer on a different day.

(3) We show the effectiveness of our metric by using data from a
residential building consisting of 60 apartments.

2 RELATEDWORK
In [9], consistency in usage pattern of a consumer is measured
with entropy metric. The authors compute possible profiles (con-
sumption patterns) of a consumer by means of clustering. Each
profile represents the center of a different cluster. Therefore, the
number of profiles for a consumer equals the number of clusters.
The approach requires calculation of the profiles of a consumer be-
forehand, which is difficult if complete yearly data is not available.
Calculating profiles depends on the clustering approach, i.e., the
value of k (# of clusters) or other thresholds. In clustering, cluster
centers are the representatives of other cluster members. A lower
value of k results in lesser number of large size clusters, while a
higher value of k results in a large number of small size clusters.
Small cluster members are compact and represent maximum sim-
ilarity in usage pattern whereas big cluster members are sparse
and represent coarse similarity in usage pattern. Therefore finding
profiles with clustering approach is hard as it depends on the value
of k, and finding an optimal value of k for different consumers is
difficult.

Instead, we propose a simple approach to quantify the consis-
tency in usage pattern across multiple days. This approach only
needs to calculate average consumption and the standard deviation
across N consecutive historical days.

3 PROBLEM DEFINITION
Given a set of consumers C with their historical energy consump-
tion, find all ci ∈ C who have highly consistent energy usage pat-
tern across days and hence are predictable. Figure 1 shows energy
consumption patterns of four different consumers over consecutive
days, where c1(Figure 1(a)) follows a random energy consumption
pattern across all days, c3 and c4 (Figures 1(c), (d)) follow a perfect
consistent pattern as peak occurs at the same time on all days, and
c2 (Figure 1(b)) follows a mix between random and consistent pat-
tern, i.e., up to 8 A.M. it follows a consistent pattern and after 8
A.M. random pattern is observed. In the literature, we do not find a
quantitative metric which can summarize consistency in the energy
consumption across days. In the rest of the paper, we design such a
consistency metric and evaluate its effectiveness.

We find this problem interesting because of its following appli-
cations

• Consumer Selection: Consumers are incentivized in DR through
time-based pricing. The selection of consumers is done by their
historical energy consumption behavior. Therefore, it is always
better to ensure that the selected consumers have consistent energy
usage pattern and will consume energy according to the utility’s
expectations during DR timings. Random energy usage consumers
may show unpredictable consumption behavior, and this may pre-
vent utilities in achieving DR objectives.

• Deterministic Power Allocation: Consider a typical office building
which has Z zones, where each zone zi ∈ Z consumes power dif-
ferently due to different occupancy schedules. Assume Figures 1(a)
and (c) represent the power consumption patterns of two zones z1
and z2 respectively on different days of a month. Figures show that
z2 follows a deterministic consumption pattern over consecutive
days as each day has a peak of 1.5 kW approximately from 10 A.M.
to 1 P.M., and for remaining hours usage remains below 0.5 kW
consistently. While as nothing can be said deterministically about
the consumption of z1 as it changes almost every day every hour.

The proposed consistency metric can represent the deterministic
nature of the power consumption pattern of z1 and z2 quantitatively
and hence can assist building manager to decide how she should
allocate power among contending zones of a building on a crisis
day. The higher the consistency score of a zone, more confidently
she can select the zone and allocate the power required (computed
using historical usage) as compared to a zone with less consistency
score.

• Energy Forecasting: Energy forecasting starts with building pre-
diction models which involve the selection of right variables among
weather (temperature, pressure, humidity), occupancy, calendar,
seasonality, historical consumption, etc.

To decide whether historical consumption variable should be
included in the prediction model, researchers either use complex
regression analysis or use “correlation technique". Correlation mea-
sures only the correlation coefficient for a pair of variables/days
and not for N days’ consumption simultaneously. As a result, it
requires interpreting

(N
2
)
correlation coefficients. Our proposed

consistency metric can measure correlation for all the days in one
shot and provides an easy to interpret value between [0 - 1]. The
higher the correlation value, the higher are the chances that the
historical consumption accounts in energy forecasting.
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Figure 2: Energy consumption patterns of 4 consumers on consecutive days. Red line represents the average consumption.
Consistency score is above the graph.

Algorithm 1: Consistency Score of a Consumer
Input: X [ ]: Vector containing N days historical power

consumption data of a consumer ci ∈ C , where each
day contains T power consumption readings

Output: Consistency score in the range [0 - 1]
1 Transform input X [ ] into matrix Y [1 : N ][1 : T ]
2 Compute mean and standard deviation across columns of Y
M[j] =mean(Y [ ][j]),∀j ∈ {1, · · · ,T }
S[j] = σ (Y [ ][j]),∀j ∈ {1, · · · ,T }

3 Cnt ← 0 /* No. of consistent days */

/* Calculate total no. of consistent days */

4 for h = 1 to N do
5 if (Y [h][j] ≤ M[j] + n ∗ S[j] & Y [h, j] ≥ M[j] − n ∗ S[j]),

∀j ∈ {1, · · · ,T } then
6 Cnt ← Cnt + 1

7 Cs = Cnt/N /* Consistency score */

8 return Cs

4 METHODOLOGY
To run DR, electric utilities need to identify the potential group of
consumers who have consistent energy usage patterns across days
for easy predictability, and have peaks at desired DR timings. Firstly,
we explain the methodology to identify consistent consumers and
later we discuss the steps to identify consistent consumers who
have peaks at desired DR timings.
Consistency Metric: Our methodology takes power consumption
data of N days as input and outputs the consistency score in the
range [0 − 1]. Algorithm 1 summarizes all the steps of the method-
ology. The steps involved in computing consistency score for a
consumer ci ∈ C are:
(1) Input Data: Input time-series power consumption data of N

days as a vector X [ ]. Assume sampling rate is T readings per
day.

(2) Data wrangling: Transform input vector X into Matrix Y con-
taining N rows and T columns, i.e., each row of Y stores data
of a separate day. Data wrangling is essential to compute the
subsequent statistical operations.

(3) Feature calculation: Compute statistical features – mean (M[1 :
T ]) and standard deviation(S[1 : T ]) – along rows of Y . BothM
and S vectors contain T values corresponding to T readings of
each of N days.

(4) Compute Score: Firstly, count the number of days for which
all of the T readings lie within n standard deviations (Algo-
rithm 1, Steps 5 - 6) and represent count as cnt . Next compute
consistency score Cs by dividing cnt with total number of days
N .
The higher the value of Cs for ci , the higher are the chances

that the mean consumptionM of ci represents its baseline/actual
energy usage pattern and implies higher chances of predictability.

Peak Detection: Once a consistent group of consumers is found
using consistency metric, the next step is to find consumers who
have peaks at desired DR time window. The peaks are identified
by using a peak detection procedure, which gives the magnitude of
peaks and their actual time of occurrence in a day. The following
steps are used to detect peaks:
(1) Fit a non-polynomial regression line M̂ using LOESS (Locally

weighted Scatter Plot Smoother) [5] on mean consumptionM .
LOESS also provides a knob to control the smoothing level of
the regression line.

(2) Find local maximas of M̂ denoted as Mmax using a rolling
window. This step essentially calculates all moving maxima
over M̂ .

(3) Store timestamps (indices) of M̂ in P wherever M̂ equals to
Mmax . These timestamps represent locations of peaks in T
consumption window.

(4) Use P to find the magnitude of all peaks fromM and then store
these peak magnitudes inMaд[ ].
Therefore using three parameters (Cs ,P ,Maд) computed via Con-

sistency metric and peak detection methodology a utility can decide
whether to include ci in DR or not.

5 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of the proposed approach, we use a
dataset of one of the residential buildings at our Institute campus.
This building consists of 60 apartments, each apartment is alloted to
an Institute faculty and is instrumented with a separate AMI meter.
The sampling rate is 5 seconds, but for the evaluation of proposed
methodology, we down-sampled data to ten minutes. All results
were computed while setting the number of historical days N and
the number of standard deviations n (Algorithm 1, Step 5) to 7 and
2 respectively. The effect of these parameters on Cs is analyzed
separately.
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Figure 3: Effect of various parameters on consistency score: (a) Historical days, (b) Sampling Interval, (c) Standard deviation

Figure 2 depicts power consumption patterns of 4 different con-
sumers between 0900 − 1400 hours, where the thick red line shows
the mean power consumptionM across days. The consistency score
is just above the graph. Consumer c1 (Figure 2(a)) has a score of 0.1
because everyday follows a different pattern in energy consump-
tion, while as c4 (Figure 2(d)) has a score of 0.9 as everyday almost
follows a similar pattern in energy consumption. Consumers c2 and
c3 (Figures 2(b) and (c)) have a score of 0.4 and 0.6 as the pattern de-
viated significantly at different hours from the mean consumption
M on a few days. This shows that the proposed consistency metric
is able to quantify the underlying power consumption pattern of a
consumer across days.

Sensitivity analysis ofCs : Consistency scoreCs depends on three
parameters: Number of historical days N , data sampling interval,
and the number of standard deviations n.
• Effect of N : Figure 3(a) shows the effect of change in N on Cs of
different consumers ci ∈ C . As the number of historical days N
increases, the chances of deviation in energy consumption among
different days also increases due to change in user behavior or sea-
son. So Cs decreases with the increase in N .
• Effect of sampling interval: Figure 3(b) shows the effect of change
in sampling interval on Cs in the different ci ∈ C . At higher sam-
pling frequency, frequent deviations in the power consumption
from mean consumption M decrease Cs whereas during down-
sampling these frequent deviations disappear due to averaging
(down-sampling function). Therefore, Cs increases as we increase
the sampling interval.
• Effect of n: Figure 3(c) shows as the number of standard devia-
tions n increases the consistency score also increases. At lower n, a
small change in power consumption from the mean consumption
M reduces Cs whereas as n increases these small changes are not
perceived as a deviation fromM so Cs increase.

The optimal value of N , sampling interval, and n can be decided
by a utility manager while considering the program requirements.

6 CONCLUSION
Peak electricity demand often stresses grid stability and can lead
to blackouts or brownouts. Utilities use DR programs to handle
this peak demand among other options such as using standby gen-
erating stations and transformers. In DR, utilities select a group
of consumers who satisfy certain criteria. At a coarse level, con-
sumers are selected by using clustering approaches. We argue that

during this selection process consumers are not screened for their
consistency in energy consumption, i.e., to obtain the confidence
that a selected consumer will show desired effect on the DR day
based on its historical consumption. In this regard, we proposed
a quantitative metric which calculates the consistency score of a
consumer in the range [0 - 1]. The higher the consistency score,
the higher are the chances that the selected consumer will show
desired behavior on scheduled DR timings.
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